Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ML Kit Introduction (for iOS)
Search
Elvis Lin
July 19, 2018
Programming
0
150
ML Kit Introduction (for iOS)
Introduce the basic concept of ML Kit and how to use it in iOS development
Elvis Lin
July 19, 2018
Tweet
Share
More Decks by Elvis Lin
See All by Elvis Lin
Protect Users' Privacy in iOS 14
elvismetaphor
0
46
Dubugging Tips and Tricks for iOS development
elvismetaphor
0
50
Strategies of Facebook LightSpeed project
elvismetaphor
0
77
Background Execution And WorkManager
elvismetaphor
2
480
作為一個跨平台的 Mobile App 開發者,從入門到放棄!?
elvismetaphor
2
500
Dependency Injection for testability of iOS app
elvismetaphor
1
1.4k
Briefly Introduction of Kotlin coroutines
elvismetaphor
1
280
MotionLayout Brief Introduction
elvismetaphor
1
330
Chapter 10. Pattern Matching with Regular Expressions
elvismetaphor
0
46
Other Decks in Programming
See All in Programming
Claude Codeの使い方
ttnyt8701
1
130
WindowInsetsだってテストしたい
ryunen344
1
190
Rubyでやりたい駆動開発 / Ruby driven development
chobishiba
1
220
CursorはMCPを使った方が良いぞ
taigakono
1
170
たった 1 枚の PHP ファイルで実装する MCP サーバ / MCP Server with Vanilla PHP
okashoi
1
170
Result型で“失敗”を型にするPHPコードの書き方
kajitack
4
230
Azure AI Foundryではじめてのマルチエージェントワークフロー
seosoft
0
120
datadog dash 2025 LLM observability for reliability and stability
ivry_presentationmaterials
0
110
来たるべき 8.0 に備えて React 19 新機能と React Router 固有機能の取捨選択とすり合わせを考える
oukayuka
2
840
Gleamという選択肢
comamoca
6
760
「ElixirでIoT!!」のこれまでとこれから
takasehideki
0
370
童醫院敏捷轉型的實踐經驗
cclai999
0
170
Featured
See All Featured
Writing Fast Ruby
sferik
628
61k
Navigating Team Friction
lara
187
15k
Typedesign – Prime Four
hannesfritz
42
2.7k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.3k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
46
9.6k
Optimizing for Happiness
mojombo
379
70k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
8
670
Why You Should Never Use an ORM
jnunemaker
PRO
56
9.4k
Being A Developer After 40
akosma
90
590k
Statistics for Hackers
jakevdp
799
220k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
124
52k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
4
200
Transcript
ML Kit 使⽤用簡介 (iOS) Elvis Lin @Cocoahead Taipei 2018-07-19
關於我 • Elvis Lin • iOS 與 Android 永遠的初學者 •
Twitter: @elvismetaphor • Blog: https://blog.elvismetaphor.me
⼤大綱 • 什什麼是(我理理解的)機器學習 • 移動裝置上實作機器學習應⽤用的限制 • TensorFlow Lite 與 ML
Kit • 範例例
機器學習的應⽤用
機器學習 • 從資料中歸納出有⽤用的規則 • 訓練模型 • 使⽤用模型 • Mobile Application
Engineer 參參 與開發主要是在「使⽤用模型」 這個範圍
Data Result (Trained) Model
移動裝置上 實作機器學習應⽤用的限制 • 記憶體有限與儲存空間有限 • 計算能⼒力力不如⼤大型伺服器 • 電池容量量有限
移動裝置上 實作機器學習應⽤用的改良⽅方向 • 記憶體有限與儲存空間有限 —> 減少模型(Model)的體積 • 計算能⼒力力不如⼤大型伺服器 —> 降低演算法的複雜度
• 電池容量量有限 —> 降低演算法的複雜度
Google 推出的解決⽅方案 • TensorFlow Lite • ML Kit
Tensorflow Lite https://youtu.be/ByJnpbDd-zc
https://www.tensorflow.org/mobile/tflite/
轉換 Tensorflow 檔案的⼯工具 • Tensorflow converter • 轉成 Tensorflow Lite
格式 • Tensorflow-CoreML converter • 轉成 CoreML 格式 • https://github.com/tf-coreml/tf-coreml
ML Kit https://youtu.be/Z-dqGRSsaBs
Neural Networks API Metal
ML Kit • Cloud Vision API / Mobile Vision API
• Tensorflow Lite • 整合 Firebase,託管「客製化的模型」
ML Kit Base APIs • Image labeling • Text recognition
(OCR) • Face detection • Barcode scanning • Landmark detection • others……
託管客製化的模型 ⽬目前只⽀支援 Tensorflow Lite 格式
使⽤用 ML Kit
建立⼀一個 Firebase 專案
建立⼀一個 iOS app 然後下載設定檔 設定好 Bundle ID 下載 GoogleService-info.plist
新增 plist 檔案到專案 • 將 GoogleService-Info.plist 放到 <root>/<application_folder>/ 下
安裝 Firebase 函式庫 • 修改 Podfile,新增以下的內容 • cd <root> pod
install • 打改 <project_name>.xcworkspace pod 'Firebase/Core' pod 'Firebase/MLVision' pod 'Firebase/MLVisionTextModel' pod 'Firebase/MLVisionFaceModel' pod 'Firebase/MLVisionBarcodeModel' pod 'Firebase/MLVision' pod 'Firebase/MLVisionLabelModel'
掃描 Barcode (Local) let barcodeDetector: VisionBarcodeDetector = Vision.vision().barcodeDetector(options: options)
let visionImage = VisionImage(image: pickedImage) barcodeDetector.detect(in: visionImage) { (barcodes, error) in guard error == nil, let barcodes = barcodes, !barcodes.isEmpty else { self.dismiss(animated: true, completion: nil) self.resultView.text = "No Barcode Detected" return } for barcode in barcodes { // handle the detected barcode } }
第1步:初始化 Detector let barcodeDetector: VisionBarcodeDetector = Vision.vision().barcodeDetector(options: options) let
visionImage = VisionImage(image: pickedImage)
第2步:取得結果 barcodeDetector.detect(in: visionImage) { (barcodes, error) in guard error ==
nil, let barcodes = barcodes, !barcodes.isEmpty else { self.dismiss(animated: true, completion: nil) self.resultView.text = "No Barcode Detected" return } for barcode in barcodes { // handle the detected barcode } }
⽀支援的 Barcode 格式 • Code 128 (FORMAT_CODE_128) • Code 39
(FORMAT_CODE_39) • Code 93 (FORMAT_CODE_93) • Codabar (FORMAT_CODABAR) • EAN-13 (FORMAT_EAN_13) • EAN-8 (FORMAT_EAN_8) • ITF (FORMAT_ITF) • UPC-A (FORMAT_UPC_A) • UPC-E (FORMAT_UPC_E) •QR Code (FORMAT_QR_CODE) • PDF417 (FORMAT_PDF417) • Aztec (FORMAT_AZTEC) • Data Matrix (FORMAT_DATA_MATRIX)
辨識⽂文字 (Local) lazy var textDetector: VisionTextDetector = Vision.vision().textDetector() func
runTextRecognition(with image: UIImage) { let visionImage = VisionImage(image: image) textDetector.detect(in: visionImage) { (features, error) in if let error = error { print("Received error: \(error)") } self.processResult(from: features, error: error) } }
辨識⽂文字 (Cloud) Lazy var cloudTextDetector: VisionCloudTextDetector = Vision.vision().cloudTextDetector() func
runCloudTextRecognition(with image: UIImage) { let visionImage = VisionImage(image: image) cloudTextDetector.detect(in: visionImage) { (features, error) in if let error = error { print("Received error: \(error)") } self.processCloudResult(from: features, error: error) } }
補充資料 • ML Kit 簡介 (for Android) https://blog.elvismetaphor.me/ml-kit-fundamentals-for- android-6444e2db0fdb •
ML Kit 簡介 (for iOS) https://blog.elvismetaphor.me/ml-kit-fundamentals-for- ios-cb705044e69b
參參考資料 • https://youtu.be/Z-dqGRSsaBs • https://codelabs.developers.google.com/codelabs/mlkit-ios/ • https://github.com/firebase/quickstart-ios/tree/master/ mlvision • https://www.appcoda.com.tw/ml-kit/
None