Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
感動するアルゴリズム
Search
eTakazawa
February 16, 2019
Science
0
170
感動するアルゴリズム
本スライドは某LT用に作成しました.厳密性より,非競プロerに向けて面白さを重視しています.
いもす法の紹介です.スライドだけだと意味不明かもしれません.
eTakazawa
February 16, 2019
Tweet
Share
More Decks by eTakazawa
See All by eTakazawa
おしゃれなアルゴリズム
etakazawa
7
4.8k
Other Decks in Science
See All in Science
科学で迫る勝敗の法則(名城大学公開講座.2024年10月) / The principle of victory discovered by science (Open lecture in Meijo Univ. 2024)
konakalab
0
190
Spectral Sparsification of Hypergraphs
tasusu
0
160
小杉考司(専修大学)
kosugitti
2
550
Machine Learning for Materials (Lecture 9)
aronwalsh
0
210
Snowflake上でRを使う: RStudioセットアップとShinyアプリケーションのデプロイ
ktatsuya
0
400
Pericarditis Comic
camkdraws
0
870
位相的データ解析とその応用例
brainpadpr
1
570
General Parasitology
uni_of_nomi
0
120
Cross-Media Information Spaces and Architectures (CISA)
signer
PRO
3
29k
大規模言語モデルの開発
chokkan
PRO
84
33k
大規模画像テキストデータのフィルタリング手法の紹介
lyakaap
6
1.5k
The thin line between reconstruction, classification, and hallucination in brain decoding
ykamit
1
910
Featured
See All Featured
Designing for Performance
lara
604
68k
It's Worth the Effort
3n
183
27k
How to Think Like a Performance Engineer
csswizardry
20
1.1k
Build The Right Thing And Hit Your Dates
maggiecrowley
33
2.4k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
250
21k
Scaling GitHub
holman
458
140k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
48k
Speed Design
sergeychernyshev
24
580
What's in a price? How to price your products and services
michaelherold
243
12k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
28
9.1k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
38
1.8k
A better future with KSS
kneath
238
17k
Transcript
ײಈ͢ΔΞϧΰϦζϜ @utsubo_21 ※ ຊεϥΠυLT༻ʹ࡞͠·ͨ͠ ɹݫີੑΑΓɼඇڝϓϩerʹ͚ͯ໘ന͞Λॏࢹ͍ͯ͠·͢
ڝٕϓϩάϥϛϯά • ϓϩάϥϛϯάͷ͕ग़Δ • ૣ͘ਖ਼֬ʹղ͍ͨਓ͕উͪ • ίϯςετͷʹΑͬͯϨʔτ͕͘
ΞϧΰϦζϜ ˍ σʔλߏ
ڝϓϩer͕Ұ൪࠷ॳʹ ײಈ͢ΔΞϧΰϦζϜ[?] ͍͢๏
͍͢๏ • ͍͢͞Μ͕ߟҊ • େྔͷҰఆ۠ؒͷͷࠐΈΛߴʹॲཧ
• ͋ͳͨ٤ళΛܦӦ͍ͯ͠·͢ • ʨೖళ࣌ࠁɼग़ళ࣌ࠁɼདྷ٬ʩͷσʔλ͕ Nݸ͕༩͑ΒΕΔ • ֤࣌ࠁͰ͓ళʹԿਓ͍Δ͔ΛΓ͍ͨ
ྫ ೖళ࣌ࠁ ग़ళ࣌ࠁ དྷ٬
ೖళ࣌ࠁ ग़ళ࣌ࠁ དྷ٬
ྫ
ೖళ࣌ࠁ ग़ళ࣌ࠁ དྷ٬
ྫ
ೖళ࣌ࠁ ग़ళ࣌ࠁ དྷ٬
ྫ
ೖళ࣌ࠁ ग़ళ࣌ࠁ དྷ٬
ྫ
ೖళ࣌ࠁ ग़ళ࣌ࠁ དྷ٬
ྫ
ೖళ࣌ࠁ ग़ళ࣌ࠁ དྷ٬
ྫ
ೖళ࣌ࠁ ग़ళ࣌ࠁ དྷ٬
ྫɿ͑
ࠓͷղ͖ํͩͱʁ • {ೖళ࣌ࠁɿ1, ग़ళ࣌ࠁɿ1,000, དྷ٬ɿ1} ͷσʔλ͕10,000ݸ͋ͬͨ߹ ✓ ྻͷ1~1,000൪ʹͦΕͧΕ1Λ͢ ✓ ͦΕΛ10,000ճ܁Γฦ͢
1,000 * 10,000 = 10,000,000ճͷܭࢉ͕ඞཁʂ
͍͢๏ɿԼ४උ ೖళ࣌ࠁ ग़ళ࣌ࠁ དྷ٬
͍͢๏ɿԼ४උ ೖళ࣌ࠁ ग़ళ࣌ࠁ དྷ٬
͍͢๏ɿԼ४උ ೖళ࣌ࠁ ग़ళ࣌ࠁ དྷ٬
͍͢๏ɿԼ४උ ೖళ࣌ࠁ ग़ళ࣌ࠁ དྷ٬
ೖళ࣌ࠁ ग़ళ࣌ࠁ དྷ٬
͍͢๏ɿԼ४උ
ೖళ࣌ࠁ ग़ళ࣌ࠁ དྷ٬
͍͢๏ɿԼ४උ
ೖళ࣌ࠁ ग़ళ࣌ࠁ དྷ٬
͍͢๏ɿԼ४උ
ೖళ࣌ࠁ ग़ళ࣌ࠁ དྷ٬
͍͢๏ɿԼ४උ
͍͢๏ɿྦྷੵΛܭࢉ
͍͢๏ɿྦྷੵΛܭࢉ
͍͢๏ɿྦྷੵΛܭࢉ
͍͢๏ɿྦྷੵΛܭࢉ
͍͢๏ɿྦྷੵΛܭࢉ
͍͢๏ɿྦྷੵΛܭࢉ
͍͢๏ɿྦྷੵΛܭࢉ
͍͢๏ɿྦྷੵΛܭࢉ
͍͢๏ɿྦྷੵΛܭࢉ
͍͢๏ɿྦྷੵΛܭࢉ ղ͚ͨʂʂʂ
ࠓͷղ͖ํͩͱʁ • {ೖళ࣌ࠁɿ1, ग़ళ࣌ࠁɿ1000, དྷ٬ɿ1} ͷσʔλ͕10,000ݸ͋ͬͨ߹ ✓ ྻͷೖɾग़ళ࣌ࠁʹ1, -1Λ͢ʢ2Օॴʣ ✓
ͦΕΛ10,000ճ܁Γฦ͢ ✓ + ྦྷੵΛܭࢉʢ1000ճͷ͠ࢉʣ 2 * 10,000 + 1000 = 21,000ճͷܭࢉͰࡁΉʂ ͖ͬ͞10,000,000ճ
·ͱΊ • ͍͢๏͍͢͝ - ೋ࣍ݩͱ͔ಉ༷ʹͰ͖Δ • ͜͏͍͏͕͖ͳΒڝٕϓϩάϥϛϯά Λ࢝Ί·͠ΐ͏