Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Graph Databases, a little connected tour (Codem...
Search
Francisco Fernández Castaño
April 11, 2014
Programming
0
130
Graph Databases, a little connected tour (Codemotion Rome)
Slides of my talk at Codemotion Rome 2014
http://rome.codemotionworld.com/2014/
Francisco Fernández Castaño
April 11, 2014
Tweet
Share
More Decks by Francisco Fernández Castaño
See All by Francisco Fernández Castaño
Bases de datos de grafos, un recorrido conectado
fcofdez
0
86
Graph Databases
fcofdez
1
230
Graph Databases
fcofdez
3
300
Metaprogramming Ruby
fcofdez
1
81
Other Decks in Programming
See All in Programming
すべてのコンテキストを、 ユーザー価値に変える
applism118
3
1.3k
ペアプロ × 生成AI 現場での実践と課題について / generative-ai-in-pair-programming
codmoninc
1
18k
AI時代のソフトウェア開発を考える(2025/07版) / Agentic Software Engineering Findy 2025-07 Edition
twada
PRO
87
29k
PipeCDのプラグイン化で目指すところ
warashi
1
280
#QiitaBash MCPのセキュリティ
ryosukedtomita
1
1.3k
レベル1の開発生産性向上に取り組む − 日々の作業の効率化・自動化を通じた改善活動
kesoji
0
220
技術同人誌をMCP Serverにしてみた
74th
1
650
MDN Web Docs に日本語翻訳でコントリビュートしたくなる
ohmori_yusuke
1
120
「Cursor/Devin全社導入の理想と現実」のその後
saitoryc
0
820
AIエージェントはこう育てる - GitHub Copilot Agentとチームの共進化サイクル
koboriakira
0
590
Webの外へ飛び出せ NativePHPが切り拓くPHPの未来
takuyakatsusa
2
550
NPOでのDevinの活用
codeforeveryone
0
840
Featured
See All Featured
The Power of CSS Pseudo Elements
geoffreycrofte
77
5.9k
Writing Fast Ruby
sferik
628
62k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
281
13k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Raft: Consensus for Rubyists
vanstee
140
7k
Done Done
chrislema
184
16k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.4k
BBQ
matthewcrist
89
9.7k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
48
2.9k
Large-scale JavaScript Application Architecture
addyosmani
512
110k
Typedesign – Prime Four
hannesfritz
42
2.7k
Into the Great Unknown - MozCon
thekraken
40
1.9k
Transcript
Graph Databases A little connected tour ! @fcofdezc
Francisco Fernández Castaño @fcofdezc Sw Engineer @biicode
Beginning
None
The old town of Königsberg has seven bridges: Can you
take a walk through town, visiting each part of the town and crossing each bridge only once?
El origen G = (V, E)
None
What is a Graph DB?
Graph Nodes Relationships Properties Store Store Connect Have Have
Written in Java ACID Rest interface Cypher
Why NOSQL?
The value of Relational Databases
Ventajas de BD Relacionales Concurrencia Persistencia Integración Estándar Persistence
Ventajas de BD Relacionales Concurrencia Persistencia Integración Estándar Concurrency
Ventajas de BD Relacionales Concurrencia Persistencia Integración Estándar Integration
Ventajas de BD Relacionales Concurrencia Persistencia Integración Estándar Standard
inconveniences Relational DBs
El Origen Impedance Mismatch
class Client < ActiveRecord::Base has_one :address has_many :orders has_and_belongs_to_many :roles
end
DesVentajas de BD Relacionales Fricción! Interoperabilidad Adaptación al cambio Escalabilidad
No está destinada para ciertos escenarios Interoperability
Adaptation to changes
!Scalability
The traditional way in the context of connected data is
artificial
Depth MySQL time (s) Neo4j time (s) Results 2 0.016
0.01 ~2500 3 30.267 0.168 ~110,000 4 1543.505 1.359 ~600,000 5 No Acaba 2.132 ~800,000 MySQL vs Neo4j * Neo4J in Action
Person Id Person 1 Frank 2 John .. … 99
Alice PersonFriend PersonID FriendID 1 2 2 1 .. … 99 2
O(log n)
O(1)
O(m log n)
O(m)
We can transform our domain model in a natural way
None
Use cases
Social Networks Follow Follow John Jeff Douglas
Geospatial problems Fraud detection Authorization Network management
Cypher Declarative language ASCII oriented Pattern matching
Cypher Cypher Traverser API Core API Kernel
Cypher a b (a)-->(b)
Cypher clapton cream (clapton)-[:play_in]->(cream) play_in
Follow Follow John Jeff Douglas Cypher (john:User)-[:FOLLOW]->(jeff:User) ! (douglas:User)-[:FOLLOW]->(john:User)
Cypher clapton {name: Eric Clapton} cream (clapton)-[:play_in]->(cream)<-[:labeled]-(blues) play_in {date: 1968}
Blues labeled
Cypher MATCH (a)-—>(b) RETURN a,b;
Cypher MATCH (a)-[:PLAY_IN]—>(b) RETURN a,b;
Cypher MATCH (a)-[:PLAY_IN]—>(g), (g)<-[:LABELED]-(e) RETURN a.name, t.date, e.name;
Cypher MATCH (c {name: ‘clapton’})-[t:PLAY_IN]—>(g), (g)<-[:LABELED]-(e) RETURN c.name, t.date, e.name;
Cypher MATCH (c {name: ‘clapton’})-[t:PLAY_IN]—>(g), (g)<-[:LABELED]-(e {name: ‘blues’}) RETURN c.name,
e.name ORDER BY t.date
Cypher MATCH (c {name: ‘clapton’})-[r:PLAY_IN | PRODUCE]—>(g), (g)<-[:LABELED]-(e {name: ‘blues’})
RETURN c.name, e.name WHERE r.date > 1968 ORDER BY r.date
Cypher MATCH (carlo)-[:KNOW*5]—>(john)
MATCH p = (startNode:Station {name: ‘Sol’}) -[rels:CONNECTED_TO*]-> (endNode:Station {name: ‘Retiro’})
RETURN p AS shortestPath, reduce(weight=0, r in rels: weight + r.weight) as tWeight ORDER BY tWeight ASC LIMIT 1
Recommendation System
Social network
Movies social network Users rate movies People act in movies
People direct movies Users follow other users
Movies social network How do we model it?
Movies social network Follow Rate {stars} User Film User Actor
Director Act in Direct
Movies social network MATCH (fran:User {name: ‘Fran’}) -[or:Rate]-> (pf:Film {title:
‘Pulp Fiction’}), ! (pf)<-[:Rate]-(other_users)-[:Rate]->(other_films) ! RETURN distinct other_films.title;
Movies social network Rate {stars} Rate {stars} User 1 Film
PF Fran User 2 Rate {stars} Film Film Rate {stars} Rate {stars}
Movies social network MATCH (fran:User {name: ‘Fran’}) -[or:Rate]-> (pf:Film {title:
‘Pulp Fiction’}), ! (pf)<-[:Rate]-(other_users)-[r:Rate]->(other_films) ! WHERE or.stars = r.stars ! RETURN distinct other_films.title;
Movies social network MATCH (fran:User {name: ‘Fran’}) -[or:Rate]-> (pf:Film {title:
‘Pulp Fiction’}), ! (pf)<-[:Rate]-(other_users)-[r:Rate]->(other_films), ! (other_users)-[:FOLLOW]-(fran) ! WHERE or.stars = r.stars ! RETURN distinct other_films.title;
Movies social network Rate {star} User 1 Film PF Fran
Rate {stars} Film Follow Rate {star}
Movies social network MATCH (tarantino:User {name: ‘Quentin Tarantino’}), (tarantino)-[:DIRECT]->(movie)<-[:ACT_IN]-(tarantino) RETURN
movie.title
Movies social network Film Actor Director Act_in Direct
Movies social network Now you should be able to categorize
the movies
Movies social network Film SubGenre Belongs_to SubGenre Belongs_to Genre Genre
Belongs_to Belongs_to
Movies social network MATCH (fran:User {name: ‘Fran’}) -[or:Rate]-> (pf:Film {title:
‘Pulp Fiction’}), ! (pf)<-[:Rate]-(other_users)-[r:Rate]->(other_films), (film)->[:BELONGS_TO*3]->(genre)<-[:BELONGS_TO]-(other_films), ! (other_users)-[:FOLLOW]-(fran) ! WHERE or.stars = r.stars ! RETURN distinct other_films.title;
Neo4J extensions Managed Unmanaged
Neo4J extensions Managed Unmanaged
Neo4J extensions Managed Unmanaged
Drivers/Clients
Instead of just picking a relational database because everyone does,
we need to understand the nature of the data we’re storing and how we want to manipulate it. Martin Fowler
References
Neo4J as a service http://www.graphenedb.com
None
Grazie