Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Graph Databases, a little connected tour (Codem...
Search
Francisco Fernández Castaño
April 11, 2014
Programming
0
130
Graph Databases, a little connected tour (Codemotion Rome)
Slides of my talk at Codemotion Rome 2014
http://rome.codemotionworld.com/2014/
Francisco Fernández Castaño
April 11, 2014
Tweet
Share
More Decks by Francisco Fernández Castaño
See All by Francisco Fernández Castaño
Bases de datos de grafos, un recorrido conectado
fcofdez
0
86
Graph Databases
fcofdez
1
230
Graph Databases
fcofdez
3
300
Metaprogramming Ruby
fcofdez
1
82
Other Decks in Programming
See All in Programming
状態遷移図を書こう / Sequence Chart vs State Diagram
orgachem
PRO
2
200
はじめてのWeb API体験 ー 飲食店検索アプリを作ろうー
akinko_0915
0
140
TypeScriptでDXを上げろ! Hono編
yusukebe
3
770
テスターからテストエンジニアへ ~新米テストエンジニアが歩んだ9ヶ月振り返り~
non0113
2
220
猫と暮らす Google Nest Cam生活🐈 / WebRTC with Google Nest Cam
yutailang0119
0
170
オンコール⼊⾨〜ページャーが鳴る前に、あなたが備えられること〜 / Before The Pager Rings
yktakaha4
2
990
Claude Code + Container Use と Cursor で作る ローカル並列開発環境のススメ / ccc local dev
kaelaela
12
7k
AI時代のソフトウェア開発を考える(2025/07版) / Agentic Software Engineering Findy 2025-07 Edition
twada
PRO
99
37k
MDN Web Docs に日本語翻訳でコントリビュートしたくなる
ohmori_yusuke
1
130
Vibe Codingの幻想を超えて-生成AIを現場で使えるようにするまでの泥臭い話.ai
fumiyakume
9
4.1k
ふつうの技術スタックでアート作品を作ってみる
akira888
1
1.3k
Flutterで備える!Accessibility Nutrition Labels完全ガイド
yuukiw00w
0
170
Featured
See All Featured
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.9k
Large-scale JavaScript Application Architecture
addyosmani
512
110k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
45
7.5k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
48
2.9k
The Art of Programming - Codeland 2020
erikaheidi
54
13k
Building an army of robots
kneath
306
45k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
15
1.6k
Embracing the Ebb and Flow
colly
86
4.8k
A designer walks into a library…
pauljervisheath
207
24k
Building a Modern Day E-commerce SEO Strategy
aleyda
42
7.4k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.8k
Transcript
Graph Databases A little connected tour ! @fcofdezc
Francisco Fernández Castaño @fcofdezc Sw Engineer @biicode
Beginning
None
The old town of Königsberg has seven bridges: Can you
take a walk through town, visiting each part of the town and crossing each bridge only once?
El origen G = (V, E)
None
What is a Graph DB?
Graph Nodes Relationships Properties Store Store Connect Have Have
Written in Java ACID Rest interface Cypher
Why NOSQL?
The value of Relational Databases
Ventajas de BD Relacionales Concurrencia Persistencia Integración Estándar Persistence
Ventajas de BD Relacionales Concurrencia Persistencia Integración Estándar Concurrency
Ventajas de BD Relacionales Concurrencia Persistencia Integración Estándar Integration
Ventajas de BD Relacionales Concurrencia Persistencia Integración Estándar Standard
inconveniences Relational DBs
El Origen Impedance Mismatch
class Client < ActiveRecord::Base has_one :address has_many :orders has_and_belongs_to_many :roles
end
DesVentajas de BD Relacionales Fricción! Interoperabilidad Adaptación al cambio Escalabilidad
No está destinada para ciertos escenarios Interoperability
Adaptation to changes
!Scalability
The traditional way in the context of connected data is
artificial
Depth MySQL time (s) Neo4j time (s) Results 2 0.016
0.01 ~2500 3 30.267 0.168 ~110,000 4 1543.505 1.359 ~600,000 5 No Acaba 2.132 ~800,000 MySQL vs Neo4j * Neo4J in Action
Person Id Person 1 Frank 2 John .. … 99
Alice PersonFriend PersonID FriendID 1 2 2 1 .. … 99 2
O(log n)
O(1)
O(m log n)
O(m)
We can transform our domain model in a natural way
None
Use cases
Social Networks Follow Follow John Jeff Douglas
Geospatial problems Fraud detection Authorization Network management
Cypher Declarative language ASCII oriented Pattern matching
Cypher Cypher Traverser API Core API Kernel
Cypher a b (a)-->(b)
Cypher clapton cream (clapton)-[:play_in]->(cream) play_in
Follow Follow John Jeff Douglas Cypher (john:User)-[:FOLLOW]->(jeff:User) ! (douglas:User)-[:FOLLOW]->(john:User)
Cypher clapton {name: Eric Clapton} cream (clapton)-[:play_in]->(cream)<-[:labeled]-(blues) play_in {date: 1968}
Blues labeled
Cypher MATCH (a)-—>(b) RETURN a,b;
Cypher MATCH (a)-[:PLAY_IN]—>(b) RETURN a,b;
Cypher MATCH (a)-[:PLAY_IN]—>(g), (g)<-[:LABELED]-(e) RETURN a.name, t.date, e.name;
Cypher MATCH (c {name: ‘clapton’})-[t:PLAY_IN]—>(g), (g)<-[:LABELED]-(e) RETURN c.name, t.date, e.name;
Cypher MATCH (c {name: ‘clapton’})-[t:PLAY_IN]—>(g), (g)<-[:LABELED]-(e {name: ‘blues’}) RETURN c.name,
e.name ORDER BY t.date
Cypher MATCH (c {name: ‘clapton’})-[r:PLAY_IN | PRODUCE]—>(g), (g)<-[:LABELED]-(e {name: ‘blues’})
RETURN c.name, e.name WHERE r.date > 1968 ORDER BY r.date
Cypher MATCH (carlo)-[:KNOW*5]—>(john)
MATCH p = (startNode:Station {name: ‘Sol’}) -[rels:CONNECTED_TO*]-> (endNode:Station {name: ‘Retiro’})
RETURN p AS shortestPath, reduce(weight=0, r in rels: weight + r.weight) as tWeight ORDER BY tWeight ASC LIMIT 1
Recommendation System
Social network
Movies social network Users rate movies People act in movies
People direct movies Users follow other users
Movies social network How do we model it?
Movies social network Follow Rate {stars} User Film User Actor
Director Act in Direct
Movies social network MATCH (fran:User {name: ‘Fran’}) -[or:Rate]-> (pf:Film {title:
‘Pulp Fiction’}), ! (pf)<-[:Rate]-(other_users)-[:Rate]->(other_films) ! RETURN distinct other_films.title;
Movies social network Rate {stars} Rate {stars} User 1 Film
PF Fran User 2 Rate {stars} Film Film Rate {stars} Rate {stars}
Movies social network MATCH (fran:User {name: ‘Fran’}) -[or:Rate]-> (pf:Film {title:
‘Pulp Fiction’}), ! (pf)<-[:Rate]-(other_users)-[r:Rate]->(other_films) ! WHERE or.stars = r.stars ! RETURN distinct other_films.title;
Movies social network MATCH (fran:User {name: ‘Fran’}) -[or:Rate]-> (pf:Film {title:
‘Pulp Fiction’}), ! (pf)<-[:Rate]-(other_users)-[r:Rate]->(other_films), ! (other_users)-[:FOLLOW]-(fran) ! WHERE or.stars = r.stars ! RETURN distinct other_films.title;
Movies social network Rate {star} User 1 Film PF Fran
Rate {stars} Film Follow Rate {star}
Movies social network MATCH (tarantino:User {name: ‘Quentin Tarantino’}), (tarantino)-[:DIRECT]->(movie)<-[:ACT_IN]-(tarantino) RETURN
movie.title
Movies social network Film Actor Director Act_in Direct
Movies social network Now you should be able to categorize
the movies
Movies social network Film SubGenre Belongs_to SubGenre Belongs_to Genre Genre
Belongs_to Belongs_to
Movies social network MATCH (fran:User {name: ‘Fran’}) -[or:Rate]-> (pf:Film {title:
‘Pulp Fiction’}), ! (pf)<-[:Rate]-(other_users)-[r:Rate]->(other_films), (film)->[:BELONGS_TO*3]->(genre)<-[:BELONGS_TO]-(other_films), ! (other_users)-[:FOLLOW]-(fran) ! WHERE or.stars = r.stars ! RETURN distinct other_films.title;
Neo4J extensions Managed Unmanaged
Neo4J extensions Managed Unmanaged
Neo4J extensions Managed Unmanaged
Drivers/Clients
Instead of just picking a relational database because everyone does,
we need to understand the nature of the data we’re storing and how we want to manipulate it. Martin Fowler
References
Neo4J as a service http://www.graphenedb.com
None
Grazie