Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Graph Databases, a little connected tour (Codem...
Search
Francisco Fernández Castaño
April 11, 2014
Programming
0
140
Graph Databases, a little connected tour (Codemotion Rome)
Slides of my talk at Codemotion Rome 2014
http://rome.codemotionworld.com/2014/
Francisco Fernández Castaño
April 11, 2014
Tweet
Share
More Decks by Francisco Fernández Castaño
See All by Francisco Fernández Castaño
Bases de datos de grafos, un recorrido conectado
fcofdez
0
87
Graph Databases
fcofdez
1
230
Graph Databases
fcofdez
3
300
Metaprogramming Ruby
fcofdez
1
85
Other Decks in Programming
See All in Programming
配送計画の均等化機能を提供する取り組みについて(⽩⾦鉱業 Meetup Vol.21@六本⽊(数理最適化編))
izu_nori
0
140
Microservices Platforms: When Team Topologies Meets Microservices Patterns
cer
PRO
1
1k
ゲームの物理 剛体編
fadis
0
320
tparseでgo testの出力を見やすくする
utgwkk
1
180
20 years of Symfony, what's next?
fabpot
2
340
Rediscover the Console - SymfonyCon Amsterdam 2025
chalasr
2
160
複数人でのCLI/Infrastructure as Codeの暮らしを良くする
shmokmt
5
2.2k
これだけで丸わかり!LangChain v1.0 アップデートまとめ
os1ma
6
1.7k
C-Shared Buildで突破するAI Agent バックテストの壁
po3rin
0
370
愛される翻訳の秘訣
kishikawakatsumi
1
310
Developing static sites with Ruby
okuramasafumi
0
250
チームをチームにするEM
hitode909
0
290
Featured
See All Featured
Faster Mobile Websites
deanohume
310
31k
Become a Pro
speakerdeck
PRO
31
5.7k
Thoughts on Productivity
jonyablonski
73
5k
Testing 201, or: Great Expectations
jmmastey
46
7.8k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
The Language of Interfaces
destraynor
162
25k
We Have a Design System, Now What?
morganepeng
54
7.9k
Navigating Team Friction
lara
191
16k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.8k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
[RailsConf 2023] Rails as a piece of cake
palkan
58
6.1k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
121
20k
Transcript
Graph Databases A little connected tour ! @fcofdezc
Francisco Fernández Castaño @fcofdezc Sw Engineer @biicode
Beginning
None
The old town of Königsberg has seven bridges: Can you
take a walk through town, visiting each part of the town and crossing each bridge only once?
El origen G = (V, E)
None
What is a Graph DB?
Graph Nodes Relationships Properties Store Store Connect Have Have
Written in Java ACID Rest interface Cypher
Why NOSQL?
The value of Relational Databases
Ventajas de BD Relacionales Concurrencia Persistencia Integración Estándar Persistence
Ventajas de BD Relacionales Concurrencia Persistencia Integración Estándar Concurrency
Ventajas de BD Relacionales Concurrencia Persistencia Integración Estándar Integration
Ventajas de BD Relacionales Concurrencia Persistencia Integración Estándar Standard
inconveniences Relational DBs
El Origen Impedance Mismatch
class Client < ActiveRecord::Base has_one :address has_many :orders has_and_belongs_to_many :roles
end
DesVentajas de BD Relacionales Fricción! Interoperabilidad Adaptación al cambio Escalabilidad
No está destinada para ciertos escenarios Interoperability
Adaptation to changes
!Scalability
The traditional way in the context of connected data is
artificial
Depth MySQL time (s) Neo4j time (s) Results 2 0.016
0.01 ~2500 3 30.267 0.168 ~110,000 4 1543.505 1.359 ~600,000 5 No Acaba 2.132 ~800,000 MySQL vs Neo4j * Neo4J in Action
Person Id Person 1 Frank 2 John .. … 99
Alice PersonFriend PersonID FriendID 1 2 2 1 .. … 99 2
O(log n)
O(1)
O(m log n)
O(m)
We can transform our domain model in a natural way
None
Use cases
Social Networks Follow Follow John Jeff Douglas
Geospatial problems Fraud detection Authorization Network management
Cypher Declarative language ASCII oriented Pattern matching
Cypher Cypher Traverser API Core API Kernel
Cypher a b (a)-->(b)
Cypher clapton cream (clapton)-[:play_in]->(cream) play_in
Follow Follow John Jeff Douglas Cypher (john:User)-[:FOLLOW]->(jeff:User) ! (douglas:User)-[:FOLLOW]->(john:User)
Cypher clapton {name: Eric Clapton} cream (clapton)-[:play_in]->(cream)<-[:labeled]-(blues) play_in {date: 1968}
Blues labeled
Cypher MATCH (a)-—>(b) RETURN a,b;
Cypher MATCH (a)-[:PLAY_IN]—>(b) RETURN a,b;
Cypher MATCH (a)-[:PLAY_IN]—>(g), (g)<-[:LABELED]-(e) RETURN a.name, t.date, e.name;
Cypher MATCH (c {name: ‘clapton’})-[t:PLAY_IN]—>(g), (g)<-[:LABELED]-(e) RETURN c.name, t.date, e.name;
Cypher MATCH (c {name: ‘clapton’})-[t:PLAY_IN]—>(g), (g)<-[:LABELED]-(e {name: ‘blues’}) RETURN c.name,
e.name ORDER BY t.date
Cypher MATCH (c {name: ‘clapton’})-[r:PLAY_IN | PRODUCE]—>(g), (g)<-[:LABELED]-(e {name: ‘blues’})
RETURN c.name, e.name WHERE r.date > 1968 ORDER BY r.date
Cypher MATCH (carlo)-[:KNOW*5]—>(john)
MATCH p = (startNode:Station {name: ‘Sol’}) -[rels:CONNECTED_TO*]-> (endNode:Station {name: ‘Retiro’})
RETURN p AS shortestPath, reduce(weight=0, r in rels: weight + r.weight) as tWeight ORDER BY tWeight ASC LIMIT 1
Recommendation System
Social network
Movies social network Users rate movies People act in movies
People direct movies Users follow other users
Movies social network How do we model it?
Movies social network Follow Rate {stars} User Film User Actor
Director Act in Direct
Movies social network MATCH (fran:User {name: ‘Fran’}) -[or:Rate]-> (pf:Film {title:
‘Pulp Fiction’}), ! (pf)<-[:Rate]-(other_users)-[:Rate]->(other_films) ! RETURN distinct other_films.title;
Movies social network Rate {stars} Rate {stars} User 1 Film
PF Fran User 2 Rate {stars} Film Film Rate {stars} Rate {stars}
Movies social network MATCH (fran:User {name: ‘Fran’}) -[or:Rate]-> (pf:Film {title:
‘Pulp Fiction’}), ! (pf)<-[:Rate]-(other_users)-[r:Rate]->(other_films) ! WHERE or.stars = r.stars ! RETURN distinct other_films.title;
Movies social network MATCH (fran:User {name: ‘Fran’}) -[or:Rate]-> (pf:Film {title:
‘Pulp Fiction’}), ! (pf)<-[:Rate]-(other_users)-[r:Rate]->(other_films), ! (other_users)-[:FOLLOW]-(fran) ! WHERE or.stars = r.stars ! RETURN distinct other_films.title;
Movies social network Rate {star} User 1 Film PF Fran
Rate {stars} Film Follow Rate {star}
Movies social network MATCH (tarantino:User {name: ‘Quentin Tarantino’}), (tarantino)-[:DIRECT]->(movie)<-[:ACT_IN]-(tarantino) RETURN
movie.title
Movies social network Film Actor Director Act_in Direct
Movies social network Now you should be able to categorize
the movies
Movies social network Film SubGenre Belongs_to SubGenre Belongs_to Genre Genre
Belongs_to Belongs_to
Movies social network MATCH (fran:User {name: ‘Fran’}) -[or:Rate]-> (pf:Film {title:
‘Pulp Fiction’}), ! (pf)<-[:Rate]-(other_users)-[r:Rate]->(other_films), (film)->[:BELONGS_TO*3]->(genre)<-[:BELONGS_TO]-(other_films), ! (other_users)-[:FOLLOW]-(fran) ! WHERE or.stars = r.stars ! RETURN distinct other_films.title;
Neo4J extensions Managed Unmanaged
Neo4J extensions Managed Unmanaged
Neo4J extensions Managed Unmanaged
Drivers/Clients
Instead of just picking a relational database because everyone does,
we need to understand the nature of the data we’re storing and how we want to manipulate it. Martin Fowler
References
Neo4J as a service http://www.graphenedb.com
None
Grazie