Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Bloom Filters: A Look Into Ruby
Search
Fernando Mendes
July 29, 2016
Programming
0
100
Bloom Filters: A Look Into Ruby
Fernando Mendes
July 29, 2016
Tweet
Share
More Decks by Fernando Mendes
See All by Fernando Mendes
you. and the morals of technology
fribmendes
1
120
Knee-Deep Into P2P: A Tale of Fail (PWL Porto)
fribmendes
0
53
Knee-Deep Into P2P: A Tale of Fail (ElixirConf EU 2018 version)
fribmendes
0
140
Knee-Deep Into P2P: A Tale of Fail (non-Elixir)
fribmendes
0
150
A Look Into Bloom Filters
fribmendes
0
340
Programming WTF: HTML & CSS
fribmendes
4
150
Ruby: A (pointless) Workshop
fribmendes
1
160
Elixir: A Talk For College Students
fribmendes
0
160
Riding Rails
fribmendes
0
100
Other Decks in Programming
See All in Programming
GoとPHPのインターフェイスの違い
shimabox
2
210
Jakarta EE meets AI
ivargrimstad
0
370
Honoをフロントエンドで使う 3つのやり方
yusukebe
7
3.5k
仕様変更に耐えるための"今の"DRY原則を考える
mkmk884
9
3.2k
Boost Performance and Developer Productivity with Jakarta EE 11
ivargrimstad
0
790
Domain-Driven Transformation
hschwentner
2
1.9k
ナレッジイネイブリングにAIを活用してみる ゆるSRE勉強会 #9
nealle
0
160
自力でTTSモデルを作った話
zgock999
0
100
Rubyで始める関数型ドメインモデリング
shogo_tksk
0
140
React 19アップデートのために必要なこと
uhyo
8
1.5k
Datadog DBMでなにができる? JDDUG Meetup#7
nealle
0
140
一休.com のログイン体験を支える技術 〜Web Components x Vue.js 活用事例と最適化について〜
atsumim
0
940
Featured
See All Featured
Side Projects
sachag
452
42k
Optimising Largest Contentful Paint
csswizardry
34
3.1k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
7
640
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
10
510
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
160
15k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
330
21k
GraphQLとの向き合い方2022年版
quramy
44
14k
A designer walks into a library…
pauljervisheath
205
24k
Visualization
eitanlees
146
15k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
129
19k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
12
990
Transcript
B L O O M F I LT E R
S or: that one time I was hella bored
Bloom Filters Or: How I Learned To Stop Procrastinating And
Benchmark The Code
THE A MASTERPIECE OF MODERN HORROR FiLTERiNG
2016: a space-efficient odyssey An epic drama of boredom and
exploration
B L O O M F I LT E R
S or: that one time I was hella bored
“a bloom filter is a space-efficient probabilistic data structure, conceived
by Burton Howard Bloom in 1970 (…) a query returns either "possibly in set" or "definitely not in set"” - Wikipedia, 2016
bloom filter
bloom filter do you have the element 3?
bloom filter yeah, probably
bloom filter do you have the element 4?
bloom filter I most certainly do not
bloom filter I most certainly do not “Why do people
even like this thing?”
add ‘subvisual’
hash(‘subvisual’)
add ‘rubyconf’
hash(‘rubyconf’)
test ‘subvisual’
hash(‘subvisual’) all are 1?
test ‘subvisual’ true
test ‘office’
all are 1? hash(‘office’)
test ‘office’ false
test ‘mirrorconf’
hash(‘mirrorconf’) all are 1?
test ‘mirrorconf’ true
test and add play with hash functions get to say
smart stuff like “so I wrote this bloom filter”
diving into it with Ruby
module DumbFilter end
module DumbFilter class Array def initialize @data = [] end
end end
module DumbFilter class Array def add(str) @data << str end
end end
module DumbFilter class Array def test(str) @data.include? str end end
end
you don’t play with hash functions sequential access space wastefulness
module DumbFilter class Hash def initialize @data = {} end
end end
module DumbFilter class Hash def add(str) @data[str] = true end
end end
module DumbFilter class Hash def test(str) @data[str] end end end
you kinda play with hash functions instant access
“a bloom filter is a space-efficient probabilistic data structure, conceived
by Burton Howard Bloom in 1970 (…) a query returns either "possibly in set" or "definitely not in set"” - Wikipedia, 2016
/peterc/bitarray
def initialize(size: 1024) @bits = BitArray.new(size) @fnv = FNV.new @size
= size end
def add(str) @bits[i(str)] = 1 end def i(str) @fnv.fnv1a_64(str) %
@size end
def test(str) @bits[i(str)] == 1 end
you do play with hash functions instant access space-efficient small
universe == more collisions
def initialize(size: 1024, iterations: 3) @bits = BitArray.new(size) @size =
size @seeds = seed(iterations) end
def initialize(size: 1024, iterations: 3) @bits = BitArray.new(size) @size =
size @seeds = seed(iterations) end
def initialize(size: 1024, iterations: 3) @bits = BitArray.new(size) @size =
size @seeds = seed(iterations) end
def seed(nr) (1..nr).each_with_object([]) do |n, s| s << SecureRandom.hex(3).to_i(16) end
end
def hash(str, seed) MurmurHash3::V32.str_hash(str, seed) end
def i(str) @seeds.map { |s| hash(str, s) % @size }
end
def add(str) set i(str) end def set(indexes) indexes.each { |i|
@bits[i] = 1 } end
def test(str) get i(str) end def get(indexes) indexes.all? { |i|
@bits[i] == 1 } end
demo (yes, yet another goddamned Rails blog app)
None
None
test-drive
5 million random inserts probabilistic universe of 10 million 5
million random accesses /igrigorik/bloomfilter-rb
fnv is really slow ruby string hashing is optimized bloomfilter-rb
uses C extensions
Collision counting ruby’s hash is not probabilistic nor space-efficient “what
about bf_v2’s poor result?”
you do play with hash functions instant access space-efficient small
universe == more collisions
Collision counting: 1024 bits & 300 entries m(bits)/n(entries) * ln(2)
optimal number of hash functions:
in the field
Article tailoring - Quora & Medium Type-ahead queries — Facebook
I/O Filter — Apache HBase Malicious URL Check — bit.ly Checking node communications in IoT sensors
B L O O M F I LT E R
S or: that one time I was hella bored