Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Bloom Filters: A Look Into Ruby
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Fernando Mendes
July 29, 2016
Programming
0
120
Bloom Filters: A Look Into Ruby
Fernando Mendes
July 29, 2016
Tweet
Share
More Decks by Fernando Mendes
See All by Fernando Mendes
you. and the morals of technology
fribmendes
1
140
Knee-Deep Into P2P: A Tale of Fail (PWL Porto)
fribmendes
0
65
Knee-Deep Into P2P: A Tale of Fail (ElixirConf EU 2018 version)
fribmendes
0
170
Knee-Deep Into P2P: A Tale of Fail (non-Elixir)
fribmendes
0
180
A Look Into Bloom Filters
fribmendes
0
510
Programming WTF: HTML & CSS
fribmendes
4
160
Ruby: A (pointless) Workshop
fribmendes
1
170
Elixir: A Talk For College Students
fribmendes
0
170
Riding Rails
fribmendes
0
110
Other Decks in Programming
See All in Programming
コントリビューターによるDenoのすゝめ / Deno Recommendations by a Contributor
petamoriken
0
200
MUSUBIXとは
nahisaho
0
130
15年続くIoTサービスのSREエンジニアが挑む分散トレーシング導入
melonps
2
200
AIによるイベントストーミング図からのコード生成 / AI-powered code generation from Event Storming diagrams
nrslib
2
1.9k
それ、本当に安全? ファイルアップロードで見落としがちなセキュリティリスクと対策
penpeen
7
3.9k
AI & Enginnering
codelynx
0
110
LLM Observabilityによる 対話型音声AIアプリケーションの安定運用
gekko0114
2
430
コマンドとリード間の連携に対する脅威分析フレームワーク
pandayumi
1
450
AtCoder Conference 2025
shindannin
0
1.1k
Best-Practices-for-Cortex-Analyst-and-AI-Agent
ryotaroikeda
1
110
今から始めるClaude Code超入門
448jp
8
8.8k
生成AIを使ったコードレビューで定性的に品質カバー
chiilog
1
270
Featured
See All Featured
Pawsitive SEO: Lessons from My Dog (and Many Mistakes) on Thriving as a Consultant in the Age of AI
davidcarrasco
0
66
Why Our Code Smells
bkeepers
PRO
340
58k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.7k
WENDY [Excerpt]
tessaabrams
9
36k
We Analyzed 250 Million AI Search Results: Here's What I Found
joshbly
1
720
Organizational Design Perspectives: An Ontology of Organizational Design Elements
kimpetersen
PRO
1
190
The Director’s Chair: Orchestrating AI for Truly Effective Learning
tmiket
1
96
Lessons Learnt from Crawling 1000+ Websites
charlesmeaden
PRO
1
1.1k
How to Get Subject Matter Experts Bought In and Actively Contributing to SEO & PR Initiatives.
livdayseo
0
66
sira's awesome portfolio website redesign presentation
elsirapls
0
150
Reality Check: Gamification 10 Years Later
codingconduct
0
2k
Learning to Love Humans: Emotional Interface Design
aarron
275
41k
Transcript
B L O O M F I LT E R
S or: that one time I was hella bored
Bloom Filters Or: How I Learned To Stop Procrastinating And
Benchmark The Code
THE A MASTERPIECE OF MODERN HORROR FiLTERiNG
2016: a space-efficient odyssey An epic drama of boredom and
exploration
B L O O M F I LT E R
S or: that one time I was hella bored
“a bloom filter is a space-efficient probabilistic data structure, conceived
by Burton Howard Bloom in 1970 (…) a query returns either "possibly in set" or "definitely not in set"” - Wikipedia, 2016
bloom filter
bloom filter do you have the element 3?
bloom filter yeah, probably
bloom filter do you have the element 4?
bloom filter I most certainly do not
bloom filter I most certainly do not “Why do people
even like this thing?”
add ‘subvisual’
hash(‘subvisual’)
add ‘rubyconf’
hash(‘rubyconf’)
test ‘subvisual’
hash(‘subvisual’) all are 1?
test ‘subvisual’ true
test ‘office’
all are 1? hash(‘office’)
test ‘office’ false
test ‘mirrorconf’
hash(‘mirrorconf’) all are 1?
test ‘mirrorconf’ true
test and add play with hash functions get to say
smart stuff like “so I wrote this bloom filter”
diving into it with Ruby
module DumbFilter end
module DumbFilter class Array def initialize @data = [] end
end end
module DumbFilter class Array def add(str) @data << str end
end end
module DumbFilter class Array def test(str) @data.include? str end end
end
you don’t play with hash functions sequential access space wastefulness
module DumbFilter class Hash def initialize @data = {} end
end end
module DumbFilter class Hash def add(str) @data[str] = true end
end end
module DumbFilter class Hash def test(str) @data[str] end end end
you kinda play with hash functions instant access
“a bloom filter is a space-efficient probabilistic data structure, conceived
by Burton Howard Bloom in 1970 (…) a query returns either "possibly in set" or "definitely not in set"” - Wikipedia, 2016
/peterc/bitarray
def initialize(size: 1024) @bits = BitArray.new(size) @fnv = FNV.new @size
= size end
def add(str) @bits[i(str)] = 1 end def i(str) @fnv.fnv1a_64(str) %
@size end
def test(str) @bits[i(str)] == 1 end
you do play with hash functions instant access space-efficient small
universe == more collisions
def initialize(size: 1024, iterations: 3) @bits = BitArray.new(size) @size =
size @seeds = seed(iterations) end
def initialize(size: 1024, iterations: 3) @bits = BitArray.new(size) @size =
size @seeds = seed(iterations) end
def initialize(size: 1024, iterations: 3) @bits = BitArray.new(size) @size =
size @seeds = seed(iterations) end
def seed(nr) (1..nr).each_with_object([]) do |n, s| s << SecureRandom.hex(3).to_i(16) end
end
def hash(str, seed) MurmurHash3::V32.str_hash(str, seed) end
def i(str) @seeds.map { |s| hash(str, s) % @size }
end
def add(str) set i(str) end def set(indexes) indexes.each { |i|
@bits[i] = 1 } end
def test(str) get i(str) end def get(indexes) indexes.all? { |i|
@bits[i] == 1 } end
demo (yes, yet another goddamned Rails blog app)
None
None
test-drive
5 million random inserts probabilistic universe of 10 million 5
million random accesses /igrigorik/bloomfilter-rb
fnv is really slow ruby string hashing is optimized bloomfilter-rb
uses C extensions
Collision counting ruby’s hash is not probabilistic nor space-efficient “what
about bf_v2’s poor result?”
you do play with hash functions instant access space-efficient small
universe == more collisions
Collision counting: 1024 bits & 300 entries m(bits)/n(entries) * ln(2)
optimal number of hash functions:
in the field
Article tailoring - Quora & Medium Type-ahead queries — Facebook
I/O Filter — Apache HBase Malicious URL Check — bit.ly Checking node communications in IoT sensors
B L O O M F I LT E R
S or: that one time I was hella bored