Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Bloom Filters: A Look Into Ruby
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
Fernando Mendes
July 29, 2016
Programming
0
120
Bloom Filters: A Look Into Ruby
Fernando Mendes
July 29, 2016
Tweet
Share
More Decks by Fernando Mendes
See All by Fernando Mendes
you. and the morals of technology
fribmendes
1
140
Knee-Deep Into P2P: A Tale of Fail (PWL Porto)
fribmendes
0
65
Knee-Deep Into P2P: A Tale of Fail (ElixirConf EU 2018 version)
fribmendes
0
170
Knee-Deep Into P2P: A Tale of Fail (non-Elixir)
fribmendes
0
180
A Look Into Bloom Filters
fribmendes
0
510
Programming WTF: HTML & CSS
fribmendes
4
160
Ruby: A (pointless) Workshop
fribmendes
1
170
Elixir: A Talk For College Students
fribmendes
0
170
Riding Rails
fribmendes
0
110
Other Decks in Programming
See All in Programming
AIエージェントのキホンから学ぶ「エージェンティックコーディング」実践入門
masahiro_nishimi
5
460
HTTPプロトコル正しく理解していますか? 〜かわいい猫と共に学ぼう。ฅ^•ω•^ฅ ニャ〜
hekuchan
2
690
20260127_試行錯誤の結晶を1冊に。著者が解説 先輩データサイエンティストからの指南書 / author's_commentary_ds_instructions_guide
nash_efp
1
970
AIによるイベントストーミング図からのコード生成 / AI-powered code generation from Event Storming diagrams
nrslib
2
1.9k
AWS re:Invent 2025参加 直前 Seattle-Tacoma Airport(SEA)におけるハードウェア紛失インシデントLT
tetutetu214
2
110
AI Agent の開発と運用を支える Durable Execution #AgentsInProd
izumin5210
7
2.3k
AI & Enginnering
codelynx
0
110
例外処理とどう使い分ける?Result型を使ったエラー設計 #burikaigi
kajitack
16
6.1k
2026年 エンジニアリング自己学習法
yumechi
0
140
OSSとなったswift-buildで Xcodeのビルドを差し替えられるため 自分でXcodeを直せる時代になっている ダイアモンド問題編
yimajo
3
620
LLM Observabilityによる 対話型音声AIアプリケーションの安定運用
gekko0114
2
430
なるべく楽してバックエンドに型をつけたい!(楽とは言ってない)
hibiki_cube
0
140
Featured
See All Featured
Effective software design: The role of men in debugging patriarchy in IT @ Voxxed Days AMS
baasie
0
230
Principles of Awesome APIs and How to Build Them.
keavy
128
17k
Mozcon NYC 2025: Stop Losing SEO Traffic
samtorres
0
140
Imperfection Machines: The Place of Print at Facebook
scottboms
269
14k
Automating Front-end Workflow
addyosmani
1371
200k
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
220
Tell your own story through comics
letsgokoyo
1
810
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.6k
Paper Plane
katiecoart
PRO
0
46k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
3.1k
Git: the NoSQL Database
bkeepers
PRO
432
66k
Navigating Algorithm Shifts & AI Overviews - #SMXNext
aleyda
0
1.1k
Transcript
B L O O M F I LT E R
S or: that one time I was hella bored
Bloom Filters Or: How I Learned To Stop Procrastinating And
Benchmark The Code
THE A MASTERPIECE OF MODERN HORROR FiLTERiNG
2016: a space-efficient odyssey An epic drama of boredom and
exploration
B L O O M F I LT E R
S or: that one time I was hella bored
“a bloom filter is a space-efficient probabilistic data structure, conceived
by Burton Howard Bloom in 1970 (…) a query returns either "possibly in set" or "definitely not in set"” - Wikipedia, 2016
bloom filter
bloom filter do you have the element 3?
bloom filter yeah, probably
bloom filter do you have the element 4?
bloom filter I most certainly do not
bloom filter I most certainly do not “Why do people
even like this thing?”
add ‘subvisual’
hash(‘subvisual’)
add ‘rubyconf’
hash(‘rubyconf’)
test ‘subvisual’
hash(‘subvisual’) all are 1?
test ‘subvisual’ true
test ‘office’
all are 1? hash(‘office’)
test ‘office’ false
test ‘mirrorconf’
hash(‘mirrorconf’) all are 1?
test ‘mirrorconf’ true
test and add play with hash functions get to say
smart stuff like “so I wrote this bloom filter”
diving into it with Ruby
module DumbFilter end
module DumbFilter class Array def initialize @data = [] end
end end
module DumbFilter class Array def add(str) @data << str end
end end
module DumbFilter class Array def test(str) @data.include? str end end
end
you don’t play with hash functions sequential access space wastefulness
module DumbFilter class Hash def initialize @data = {} end
end end
module DumbFilter class Hash def add(str) @data[str] = true end
end end
module DumbFilter class Hash def test(str) @data[str] end end end
you kinda play with hash functions instant access
“a bloom filter is a space-efficient probabilistic data structure, conceived
by Burton Howard Bloom in 1970 (…) a query returns either "possibly in set" or "definitely not in set"” - Wikipedia, 2016
/peterc/bitarray
def initialize(size: 1024) @bits = BitArray.new(size) @fnv = FNV.new @size
= size end
def add(str) @bits[i(str)] = 1 end def i(str) @fnv.fnv1a_64(str) %
@size end
def test(str) @bits[i(str)] == 1 end
you do play with hash functions instant access space-efficient small
universe == more collisions
def initialize(size: 1024, iterations: 3) @bits = BitArray.new(size) @size =
size @seeds = seed(iterations) end
def initialize(size: 1024, iterations: 3) @bits = BitArray.new(size) @size =
size @seeds = seed(iterations) end
def initialize(size: 1024, iterations: 3) @bits = BitArray.new(size) @size =
size @seeds = seed(iterations) end
def seed(nr) (1..nr).each_with_object([]) do |n, s| s << SecureRandom.hex(3).to_i(16) end
end
def hash(str, seed) MurmurHash3::V32.str_hash(str, seed) end
def i(str) @seeds.map { |s| hash(str, s) % @size }
end
def add(str) set i(str) end def set(indexes) indexes.each { |i|
@bits[i] = 1 } end
def test(str) get i(str) end def get(indexes) indexes.all? { |i|
@bits[i] == 1 } end
demo (yes, yet another goddamned Rails blog app)
None
None
test-drive
5 million random inserts probabilistic universe of 10 million 5
million random accesses /igrigorik/bloomfilter-rb
fnv is really slow ruby string hashing is optimized bloomfilter-rb
uses C extensions
Collision counting ruby’s hash is not probabilistic nor space-efficient “what
about bf_v2’s poor result?”
you do play with hash functions instant access space-efficient small
universe == more collisions
Collision counting: 1024 bits & 300 entries m(bits)/n(entries) * ln(2)
optimal number of hash functions:
in the field
Article tailoring - Quora & Medium Type-ahead queries — Facebook
I/O Filter — Apache HBase Malicious URL Check — bit.ly Checking node communications in IoT sensors
B L O O M F I LT E R
S or: that one time I was hella bored