Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Bloom Filters: A Look Into Ruby
Search
Fernando Mendes
July 29, 2016
Programming
0
120
Bloom Filters: A Look Into Ruby
Fernando Mendes
July 29, 2016
Tweet
Share
More Decks by Fernando Mendes
See All by Fernando Mendes
you. and the morals of technology
fribmendes
1
140
Knee-Deep Into P2P: A Tale of Fail (PWL Porto)
fribmendes
0
63
Knee-Deep Into P2P: A Tale of Fail (ElixirConf EU 2018 version)
fribmendes
0
170
Knee-Deep Into P2P: A Tale of Fail (non-Elixir)
fribmendes
0
180
A Look Into Bloom Filters
fribmendes
0
470
Programming WTF: HTML & CSS
fribmendes
4
160
Ruby: A (pointless) Workshop
fribmendes
1
160
Elixir: A Talk For College Students
fribmendes
0
170
Riding Rails
fribmendes
0
110
Other Decks in Programming
See All in Programming
AIエンジニアリングのご紹介 / Introduction to AI Engineering
rkaga
6
2.1k
実はマルチモーダルだった。ブラウザの組み込みAI🧠でWebの未来を感じてみよう #jsfes #gemini
n0bisuke2
2
810
MAP, Jigsaw, Code Golf 振り返り会 by 関東Kaggler会|Jigsaw 15th Solution
hasibirok0
0
230
Rubyで鍛える仕組み化プロヂュース力
muryoimpl
0
110
配送計画の均等化機能を提供する取り組みについて(⽩⾦鉱業 Meetup Vol.21@六本⽊(数理最適化編))
izu_nori
0
150
안드로이드 9년차 개발자, 프론트엔드 주니어로 커리어 리셋하기
maryang
1
110
TypeScriptで設計する 堅牢さとUXを両立した非同期ワークフローの実現
moeka__c
6
3k
【Streamlit x Snowflake】データ基盤からアプリ開発・AI活用まで、すべてをSnowflake内で実現
ayumu_yamaguchi
1
120
Integrating WordPress and Symfony
alexandresalome
0
150
Microservices rules: What good looks like
cer
PRO
0
1.3k
Navigation 3: 적응형 UI를 위한 앱 탐색
fornewid
1
320
FluorTracer / RayTracingCamp11
kugimasa
0
230
Featured
See All Featured
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
1k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
47
7.9k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.8k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
35
2.3k
Code Review Best Practice
trishagee
74
19k
A Tale of Four Properties
chriscoyier
162
23k
BBQ
matthewcrist
89
9.9k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.4k
Designing Experiences People Love
moore
143
24k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Being A Developer After 40
akosma
91
590k
Faster Mobile Websites
deanohume
310
31k
Transcript
B L O O M F I LT E R
S or: that one time I was hella bored
Bloom Filters Or: How I Learned To Stop Procrastinating And
Benchmark The Code
THE A MASTERPIECE OF MODERN HORROR FiLTERiNG
2016: a space-efficient odyssey An epic drama of boredom and
exploration
B L O O M F I LT E R
S or: that one time I was hella bored
“a bloom filter is a space-efficient probabilistic data structure, conceived
by Burton Howard Bloom in 1970 (…) a query returns either "possibly in set" or "definitely not in set"” - Wikipedia, 2016
bloom filter
bloom filter do you have the element 3?
bloom filter yeah, probably
bloom filter do you have the element 4?
bloom filter I most certainly do not
bloom filter I most certainly do not “Why do people
even like this thing?”
add ‘subvisual’
hash(‘subvisual’)
add ‘rubyconf’
hash(‘rubyconf’)
test ‘subvisual’
hash(‘subvisual’) all are 1?
test ‘subvisual’ true
test ‘office’
all are 1? hash(‘office’)
test ‘office’ false
test ‘mirrorconf’
hash(‘mirrorconf’) all are 1?
test ‘mirrorconf’ true
test and add play with hash functions get to say
smart stuff like “so I wrote this bloom filter”
diving into it with Ruby
module DumbFilter end
module DumbFilter class Array def initialize @data = [] end
end end
module DumbFilter class Array def add(str) @data << str end
end end
module DumbFilter class Array def test(str) @data.include? str end end
end
you don’t play with hash functions sequential access space wastefulness
module DumbFilter class Hash def initialize @data = {} end
end end
module DumbFilter class Hash def add(str) @data[str] = true end
end end
module DumbFilter class Hash def test(str) @data[str] end end end
you kinda play with hash functions instant access
“a bloom filter is a space-efficient probabilistic data structure, conceived
by Burton Howard Bloom in 1970 (…) a query returns either "possibly in set" or "definitely not in set"” - Wikipedia, 2016
/peterc/bitarray
def initialize(size: 1024) @bits = BitArray.new(size) @fnv = FNV.new @size
= size end
def add(str) @bits[i(str)] = 1 end def i(str) @fnv.fnv1a_64(str) %
@size end
def test(str) @bits[i(str)] == 1 end
you do play with hash functions instant access space-efficient small
universe == more collisions
def initialize(size: 1024, iterations: 3) @bits = BitArray.new(size) @size =
size @seeds = seed(iterations) end
def initialize(size: 1024, iterations: 3) @bits = BitArray.new(size) @size =
size @seeds = seed(iterations) end
def initialize(size: 1024, iterations: 3) @bits = BitArray.new(size) @size =
size @seeds = seed(iterations) end
def seed(nr) (1..nr).each_with_object([]) do |n, s| s << SecureRandom.hex(3).to_i(16) end
end
def hash(str, seed) MurmurHash3::V32.str_hash(str, seed) end
def i(str) @seeds.map { |s| hash(str, s) % @size }
end
def add(str) set i(str) end def set(indexes) indexes.each { |i|
@bits[i] = 1 } end
def test(str) get i(str) end def get(indexes) indexes.all? { |i|
@bits[i] == 1 } end
demo (yes, yet another goddamned Rails blog app)
None
None
test-drive
5 million random inserts probabilistic universe of 10 million 5
million random accesses /igrigorik/bloomfilter-rb
fnv is really slow ruby string hashing is optimized bloomfilter-rb
uses C extensions
Collision counting ruby’s hash is not probabilistic nor space-efficient “what
about bf_v2’s poor result?”
you do play with hash functions instant access space-efficient small
universe == more collisions
Collision counting: 1024 bits & 300 entries m(bits)/n(entries) * ln(2)
optimal number of hash functions:
in the field
Article tailoring - Quora & Medium Type-ahead queries — Facebook
I/O Filter — Apache HBase Malicious URL Check — bit.ly Checking node communications in IoT sensors
B L O O M F I LT E R
S or: that one time I was hella bored