$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Bloom Filters: A Look Into Ruby
Search
Fernando Mendes
July 29, 2016
Programming
0
120
Bloom Filters: A Look Into Ruby
Fernando Mendes
July 29, 2016
Tweet
Share
More Decks by Fernando Mendes
See All by Fernando Mendes
you. and the morals of technology
fribmendes
1
140
Knee-Deep Into P2P: A Tale of Fail (PWL Porto)
fribmendes
0
65
Knee-Deep Into P2P: A Tale of Fail (ElixirConf EU 2018 version)
fribmendes
0
170
Knee-Deep Into P2P: A Tale of Fail (non-Elixir)
fribmendes
0
180
A Look Into Bloom Filters
fribmendes
0
480
Programming WTF: HTML & CSS
fribmendes
4
160
Ruby: A (pointless) Workshop
fribmendes
1
160
Elixir: A Talk For College Students
fribmendes
0
170
Riding Rails
fribmendes
0
110
Other Decks in Programming
See All in Programming
Canon EOS R50 V と R5 Mark II 購入でみえてきた最近のデジイチ VR180 事情、そして VR180 静止画に活路を見出すまで
karad
0
140
Pythonではじめるオープンデータ分析〜書籍の紹介と書籍で紹介しきれなかった事例の紹介〜
welliving
3
610
生成AI時代を勝ち抜くエンジニア組織マネジメント
coconala_engineer
0
23k
これならできる!個人開発のすゝめ
tinykitten
PRO
0
130
0→1 フロントエンド開発 Tips🚀 #レバテックMeetup
bengo4com
0
400
AI 駆動開発ライフサイクル(AI-DLC):ソフトウェアエンジニアリングの再構築 / AI-DLC Introduction
kanamasa
11
4k
HTTPプロトコル正しく理解していますか? 〜かわいい猫と共に学ぼう。ฅ^•ω•^ฅ ニャ〜
hekuchan
2
470
リリース時」テストから「デイリー実行」へ!開発マネージャが取り組んだ、レガシー自動テストのモダン化戦略
goataka
0
140
AtCoder Conference 2025「LLM時代のAHC」
imjk
2
590
20251212 AI 時代的 Legacy Code 營救術 2025 WebConf
mouson
0
220
Java 25, Nuevas características
czelabueno
0
120
「コードは上から下へ読むのが一番」と思った時に、思い出してほしい話
panda728
PRO
39
26k
Featured
See All Featured
The Impact of AI in SEO - AI Overviews June 2024 Edition
aleyda
5
680
SEO in 2025: How to Prepare for the Future of Search
ipullrank
3
3.3k
Data-driven link building: lessons from a $708K investment (BrightonSEO talk)
szymonslowik
1
860
The Curious Case for Waylosing
cassininazir
0
190
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
2
120
Building the Perfect Custom Keyboard
takai
1
660
Redefining SEO in the New Era of Traffic Generation
szymonslowik
1
170
JAMstack: Web Apps at Ludicrous Speed - All Things Open 2022
reverentgeek
1
300
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
1k
Embracing the Ebb and Flow
colly
88
4.9k
Darren the Foodie - Storyboard
khoart
PRO
0
2k
Money Talks: Using Revenue to Get Sh*t Done
nikkihalliwell
0
120
Transcript
B L O O M F I LT E R
S or: that one time I was hella bored
Bloom Filters Or: How I Learned To Stop Procrastinating And
Benchmark The Code
THE A MASTERPIECE OF MODERN HORROR FiLTERiNG
2016: a space-efficient odyssey An epic drama of boredom and
exploration
B L O O M F I LT E R
S or: that one time I was hella bored
“a bloom filter is a space-efficient probabilistic data structure, conceived
by Burton Howard Bloom in 1970 (…) a query returns either "possibly in set" or "definitely not in set"” - Wikipedia, 2016
bloom filter
bloom filter do you have the element 3?
bloom filter yeah, probably
bloom filter do you have the element 4?
bloom filter I most certainly do not
bloom filter I most certainly do not “Why do people
even like this thing?”
add ‘subvisual’
hash(‘subvisual’)
add ‘rubyconf’
hash(‘rubyconf’)
test ‘subvisual’
hash(‘subvisual’) all are 1?
test ‘subvisual’ true
test ‘office’
all are 1? hash(‘office’)
test ‘office’ false
test ‘mirrorconf’
hash(‘mirrorconf’) all are 1?
test ‘mirrorconf’ true
test and add play with hash functions get to say
smart stuff like “so I wrote this bloom filter”
diving into it with Ruby
module DumbFilter end
module DumbFilter class Array def initialize @data = [] end
end end
module DumbFilter class Array def add(str) @data << str end
end end
module DumbFilter class Array def test(str) @data.include? str end end
end
you don’t play with hash functions sequential access space wastefulness
module DumbFilter class Hash def initialize @data = {} end
end end
module DumbFilter class Hash def add(str) @data[str] = true end
end end
module DumbFilter class Hash def test(str) @data[str] end end end
you kinda play with hash functions instant access
“a bloom filter is a space-efficient probabilistic data structure, conceived
by Burton Howard Bloom in 1970 (…) a query returns either "possibly in set" or "definitely not in set"” - Wikipedia, 2016
/peterc/bitarray
def initialize(size: 1024) @bits = BitArray.new(size) @fnv = FNV.new @size
= size end
def add(str) @bits[i(str)] = 1 end def i(str) @fnv.fnv1a_64(str) %
@size end
def test(str) @bits[i(str)] == 1 end
you do play with hash functions instant access space-efficient small
universe == more collisions
def initialize(size: 1024, iterations: 3) @bits = BitArray.new(size) @size =
size @seeds = seed(iterations) end
def initialize(size: 1024, iterations: 3) @bits = BitArray.new(size) @size =
size @seeds = seed(iterations) end
def initialize(size: 1024, iterations: 3) @bits = BitArray.new(size) @size =
size @seeds = seed(iterations) end
def seed(nr) (1..nr).each_with_object([]) do |n, s| s << SecureRandom.hex(3).to_i(16) end
end
def hash(str, seed) MurmurHash3::V32.str_hash(str, seed) end
def i(str) @seeds.map { |s| hash(str, s) % @size }
end
def add(str) set i(str) end def set(indexes) indexes.each { |i|
@bits[i] = 1 } end
def test(str) get i(str) end def get(indexes) indexes.all? { |i|
@bits[i] == 1 } end
demo (yes, yet another goddamned Rails blog app)
None
None
test-drive
5 million random inserts probabilistic universe of 10 million 5
million random accesses /igrigorik/bloomfilter-rb
fnv is really slow ruby string hashing is optimized bloomfilter-rb
uses C extensions
Collision counting ruby’s hash is not probabilistic nor space-efficient “what
about bf_v2’s poor result?”
you do play with hash functions instant access space-efficient small
universe == more collisions
Collision counting: 1024 bits & 300 entries m(bits)/n(entries) * ln(2)
optimal number of hash functions:
in the field
Article tailoring - Quora & Medium Type-ahead queries — Facebook
I/O Filter — Apache HBase Malicious URL Check — bit.ly Checking node communications in IoT sensors
B L O O M F I LT E R
S or: that one time I was hella bored