Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
A Look Into Bloom Filters
Search
Fernando Mendes
October 07, 2016
Programming
0
470
A Look Into Bloom Filters
Fernando Mendes
October 07, 2016
Tweet
Share
More Decks by Fernando Mendes
See All by Fernando Mendes
you. and the morals of technology
fribmendes
1
140
Knee-Deep Into P2P: A Tale of Fail (PWL Porto)
fribmendes
0
63
Knee-Deep Into P2P: A Tale of Fail (ElixirConf EU 2018 version)
fribmendes
0
170
Knee-Deep Into P2P: A Tale of Fail (non-Elixir)
fribmendes
0
180
Bloom Filters: A Look Into Ruby
fribmendes
0
120
Programming WTF: HTML & CSS
fribmendes
4
160
Ruby: A (pointless) Workshop
fribmendes
1
160
Elixir: A Talk For College Students
fribmendes
0
170
Riding Rails
fribmendes
0
110
Other Decks in Programming
See All in Programming
テストやOSS開発に役立つSetup PHP Action
matsuo_atsushi
0
150
Cell-Based Architecture
larchanjo
0
110
How Software Deployment tools have changed in the past 20 years
geshan
0
29k
WebRTC と Rust と8K 60fps
tnoho
2
2k
俺流レスポンシブコーディング 2025
tak_dcxi
14
8.6k
配送計画の均等化機能を提供する取り組みについて(⽩⾦鉱業 Meetup Vol.21@六本⽊(数理最適化編))
izu_nori
0
150
愛される翻訳の秘訣
kishikawakatsumi
1
320
ローターアクトEクラブ アメリカンナイト:川端 柚菜 氏(Japan O.K. ローターアクトEクラブ 会長):2720 Japan O.K. ロータリーEクラブ2025年12月1日卓話
2720japanoke
0
730
エディターってAIで操作できるんだぜ
kis9a
0
710
Giselleで作るAI QAアシスタント 〜 Pull Requestレビューに継続的QAを
codenote
0
150
ViewファーストなRailsアプリ開発のたのしさ
sugiwe
0
450
sbt 2
xuwei_k
0
270
Featured
See All Featured
We Have a Design System, Now What?
morganepeng
54
7.9k
Balancing Empowerment & Direction
lara
5
790
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.2k
How to Ace a Technical Interview
jacobian
280
24k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.3k
Into the Great Unknown - MozCon
thekraken
40
2.2k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
Six Lessons from altMBA
skipperchong
29
4.1k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
14k
Rails Girls Zürich Keynote
gr2m
95
14k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
141
34k
Transcript
bloom filters a look into
a look into bloom filters
@fribmendes @frmendes
@cesiuminho
@cesiuminho
@coderdojominho
We design and develop thoughtful digital products. BRAGA & BOSTON
@mirrorconf @rubyconfpt
wat the wtf is a bloom filter
“A bloom filter is a space-efficient probabilistic data structure, conceived
by Burton Howard Bloom in 1970 (…) a query returns either possibly in set or definitely not in set.” - Wikipedia, 2016
A funky array with hash functions that’s supposed to be
really really small.
bloom filter do you have ‘abc’ in there?
bloom filter i definitely do not do you have ‘abc’
in there?
how about some ‘xyz’? bloom filter i definitely do not
i mean, yeah, probably bloom filter how about some ‘xyz’?
SERVER
Can I visit “pixels.camp”? SERVER
SERVER Can I visit “pixels.camp”?
Can I visit “pixels.camp”? SERVER CLIENT bloom filter
Pre-filling the bloom filter
add(‘totallynotfake.com’)
hash(‘totallynotfake.com’)
hash(‘totallynotfake.com’)
hash(‘clickformoney.com’)
Can I visit “pixels.camp”? CLIENT
hash(‘pixels.camp’) Can I visit “pixels.camp”? CLIENT
yes! Can I visit “pixels.camp”? CLIENT
Can I visit “github.com”? CLIENT
hash(‘github.com’) CLIENT Can I visit “github.com”?
nope. Can I visit “github.com”? CLIENT
SERVER Can I visit “github.com”?
you’re good to go Can I visit “github.com”? SERVER
“A bloom filter is a space-efficient probabilistic data structure, conceived
by Burton Howard Bloom in 1970 (…) a query returns either possibly in set or definitely not in set.” - Wikipedia, 2016
“A bloom filter is a space-efficient probabilistic data structure, conceived
by Burton Howard Bloom in 1970 (…) a query returns either possibly in set or definitely not in set.” - Wikipedia, 2016
“A bloom filter is a space-efficient probabilistic data structure, conceived
by Burton Howard Bloom in 1970 (…) a query returns either possibly in set or definitely not in set.” - Wikipedia, 2016
Things to consider: bloom filters do inclusion testing
Things to consider: bloom filters turn big data into tiny
data
Things to consider: bloom filters turn false into true
Things to consider: your application must allow false positives
diving into it
module MaliciousUrl class Filter end end
module MaliciousUrl class Filter def initialize @filter = Hash.new end
end end
module MaliciousUrl class Filter def add(url) @filter[url] = true end
end end
module MaliciousUrl class Filter def test(url) @filter[url] end end end
instant access™
instant access™ space complexity: saving key-value tuples
instant access™ space complexity: saving key-value tuples solution: bit arrays
module MaliciousUrl class Filter def initialize(size: 1024) @bits = BitArray.new(size)
@fnv = FNV.new @size = size end end end
module MaliciousUrl class Filter def hash(str) @fnv.fnv1a_32(str) % @size end
end end
module MaliciousUrl class Filter def add(str) index = hash(str) @bits[index]
= 1 end end end
module MaliciousUrl class Filter def test(str) index = hash(str) @bits[index]
== 1 end end end
instant access™
instant access™ space-efficiency
instant access™ space-efficiency small universe == more collisions
instant access™ space-efficiency small universe == more collisions solution: more
hashes
def initialize(size: 1024, iterations: 3) @bits = BitArray.new(size) @size =
size @seeds = seed(iterations) end
def initialize(size: 1024, iterations: 3) @bits = BitArray.new(size) @size =
size @seeds = seed(iterations) end
def initialize(size: 1024, iterations: 3) @bits = BitArray.new(size) @size =
size @seeds = seed(iterations) end
def seed(n) seeds = [] n.times do seed = SecureRandom.hex(3).to_i(16)
seeds.push(seed) end seeds end
def seed(iterations) (1..iterations).map do SecureRandom.hex(3).to_i(16) end end because Ruby
def initialize(size: 1024, iterations: 3) @bits = BitArray.new(size) @size =
size @seeds = seed(iterations) end
def hash(str, seed) hash = MurmurHash3::V32.str_hash(str, seed) hash % @size
end
def indices_of(str) @seeds.map { |seed| hash(str, seed) } end
def add(str) indices_of(str).each { |i| @bits[i] = 1 } end
def test(str) indices_of(str).all? { |i| @bits[i] == 1 } end
a test drive
A benchmark create a bloom filter with 1024 bits insert
900 values test 2048 values
$ ruby benchmark.rb ### V1 Bloom filter size: 1024. Inserted
values: 900. Tested values: 2048. Positive tests: 1532. False positives: 632. ### V2 Bloom filter size: 1024. Inserted values: 900. Tested values: 2048. Positive tests: 1816. False positives: 916.
$ ruby benchmark.rb ### V1 Bloom filter size: 1024. Inserted
values: 900. Tested values: 2048. Positive tests: 1532. False positives: 632. ### V2 Bloom filter size: 1024. Inserted values: 900. Tested values: 2048. Positive tests: 1816. False positives: 916.
$ ruby benchmark.rb ### V1 Bloom filter size: 1024. Inserted
values: 900. Tested values: 2048. Positive tests: 1532. False positives: 632. ### V2 Bloom filter size: 1024. Inserted values: 900. * 3 = 2700 Tested values: 2048. Positive tests: 1816. False positives: 916.
$ ruby benchmark_v2.rb ### V1 Bloom filter size: 1024. Inserted
values: 300. Tested values: 2048. Positive tests: 729. False positives: 429. ### V2 Bloom filter size: 1024. Inserted values: 300. Tested values: 2048. Positive tests: 627. False positives: 327.
$ ruby benchmark_v2.rb ### V1 Bloom filter size: 1024. Inserted
values: 300. Tested values: 2048. Positive tests: 729. False positives: 429. ### V2 Bloom filter size: 1024. Inserted values: 300. Tested values: 2048. Positive tests: 627. False positives: 327.
Things to consider: the expected amount of entries influences performance
the number of hash functions influences performance Things to consider:
calculating the optimal size & number of hash functions is
a solved problem Things to consider:
calculating the optimal size & number of hash functions is
a solved problem • false positive rate • expected number of items Things to consider:
benchmark, benchmark, benchmark estimate, estimate, estimate Things to consider:
into the wild
None
None
None
id: 1 id: 2 “fernando” “mendes” “miguel” “palhas”
id: 1 id: 2 “fernando” “mendes” “miguel” “palhas” add(“m”) add(“p”)
None
@fribmendes @frmendes Fernando Mendes