Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
A Look Into Bloom Filters
Search
Fernando Mendes
October 07, 2016
Programming
0
430
A Look Into Bloom Filters
Fernando Mendes
October 07, 2016
Tweet
Share
More Decks by Fernando Mendes
See All by Fernando Mendes
you. and the morals of technology
fribmendes
1
130
Knee-Deep Into P2P: A Tale of Fail (PWL Porto)
fribmendes
0
60
Knee-Deep Into P2P: A Tale of Fail (ElixirConf EU 2018 version)
fribmendes
0
160
Knee-Deep Into P2P: A Tale of Fail (non-Elixir)
fribmendes
0
170
Bloom Filters: A Look Into Ruby
fribmendes
0
110
Programming WTF: HTML & CSS
fribmendes
4
160
Ruby: A (pointless) Workshop
fribmendes
1
160
Elixir: A Talk For College Students
fribmendes
0
160
Riding Rails
fribmendes
0
110
Other Decks in Programming
See All in Programming
Reactive Thinking with Signals and the Resource API
manfredsteyer
PRO
0
120
業務でAIを使いたい話
hnw
0
230
data-viz-talk-cz-2025
lcolladotor
0
110
PyCon mini 東海 2025「個人ではじめるマルチAIエージェント入門 〜LangChain × LangGraphでアイデアを形にするステップ〜」
komofr
3
450
CSC305 Lecture 14
javiergs
PRO
0
220
予防に勝る防御なし(2025年版) - 堅牢なコードを導く様々な設計のヒント / Growing Reliable Code PHP Conference Fukuoka 2025
twada
PRO
21
4.8k
AsyncSequenceとAsyncStreamのプロポーザルを全部読む!!
s_shimotori
1
230
エンジニアインターン「Treasure」とHonoの2年、そして未来へ / Our Journey with Hono Two Years at Treasure and Beyond
carta_engineering
0
490
Vueのバリデーション、結局どれを選べばいい? ― 自作バリデーションの限界と、脱却までの道のり ― / Which Vue Validation Library Should We Really Use? The Limits of Self-Made Validation and How I Finally Moved On
neginasu
3
1.8k
When Dependencies Fail: Building Antifragile Applications in a Fragile World
selcukusta
0
120
Inside of Swift Export
giginet
PRO
1
360
EMこそClaude Codeでコード調査しよう
shibayu36
0
590
Featured
See All Featured
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
950
Product Roadmaps are Hard
iamctodd
PRO
55
11k
Large-scale JavaScript Application Architecture
addyosmani
514
110k
BBQ
matthewcrist
89
9.9k
Fireside Chat
paigeccino
41
3.7k
The Cost Of JavaScript in 2023
addyosmani
55
9.1k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.5k
Music & Morning Musume
bryan
46
6.9k
How GitHub (no longer) Works
holman
315
140k
Balancing Empowerment & Direction
lara
5
720
Transcript
bloom filters a look into
a look into bloom filters
@fribmendes @frmendes
@cesiuminho
@cesiuminho
@coderdojominho
We design and develop thoughtful digital products. BRAGA & BOSTON
@mirrorconf @rubyconfpt
wat the wtf is a bloom filter
“A bloom filter is a space-efficient probabilistic data structure, conceived
by Burton Howard Bloom in 1970 (…) a query returns either possibly in set or definitely not in set.” - Wikipedia, 2016
A funky array with hash functions that’s supposed to be
really really small.
bloom filter do you have ‘abc’ in there?
bloom filter i definitely do not do you have ‘abc’
in there?
how about some ‘xyz’? bloom filter i definitely do not
i mean, yeah, probably bloom filter how about some ‘xyz’?
SERVER
Can I visit “pixels.camp”? SERVER
SERVER Can I visit “pixels.camp”?
Can I visit “pixels.camp”? SERVER CLIENT bloom filter
Pre-filling the bloom filter
add(‘totallynotfake.com’)
hash(‘totallynotfake.com’)
hash(‘totallynotfake.com’)
hash(‘clickformoney.com’)
Can I visit “pixels.camp”? CLIENT
hash(‘pixels.camp’) Can I visit “pixels.camp”? CLIENT
yes! Can I visit “pixels.camp”? CLIENT
Can I visit “github.com”? CLIENT
hash(‘github.com’) CLIENT Can I visit “github.com”?
nope. Can I visit “github.com”? CLIENT
SERVER Can I visit “github.com”?
you’re good to go Can I visit “github.com”? SERVER
“A bloom filter is a space-efficient probabilistic data structure, conceived
by Burton Howard Bloom in 1970 (…) a query returns either possibly in set or definitely not in set.” - Wikipedia, 2016
“A bloom filter is a space-efficient probabilistic data structure, conceived
by Burton Howard Bloom in 1970 (…) a query returns either possibly in set or definitely not in set.” - Wikipedia, 2016
“A bloom filter is a space-efficient probabilistic data structure, conceived
by Burton Howard Bloom in 1970 (…) a query returns either possibly in set or definitely not in set.” - Wikipedia, 2016
Things to consider: bloom filters do inclusion testing
Things to consider: bloom filters turn big data into tiny
data
Things to consider: bloom filters turn false into true
Things to consider: your application must allow false positives
diving into it
module MaliciousUrl class Filter end end
module MaliciousUrl class Filter def initialize @filter = Hash.new end
end end
module MaliciousUrl class Filter def add(url) @filter[url] = true end
end end
module MaliciousUrl class Filter def test(url) @filter[url] end end end
instant access™
instant access™ space complexity: saving key-value tuples
instant access™ space complexity: saving key-value tuples solution: bit arrays
module MaliciousUrl class Filter def initialize(size: 1024) @bits = BitArray.new(size)
@fnv = FNV.new @size = size end end end
module MaliciousUrl class Filter def hash(str) @fnv.fnv1a_32(str) % @size end
end end
module MaliciousUrl class Filter def add(str) index = hash(str) @bits[index]
= 1 end end end
module MaliciousUrl class Filter def test(str) index = hash(str) @bits[index]
== 1 end end end
instant access™
instant access™ space-efficiency
instant access™ space-efficiency small universe == more collisions
instant access™ space-efficiency small universe == more collisions solution: more
hashes
def initialize(size: 1024, iterations: 3) @bits = BitArray.new(size) @size =
size @seeds = seed(iterations) end
def initialize(size: 1024, iterations: 3) @bits = BitArray.new(size) @size =
size @seeds = seed(iterations) end
def initialize(size: 1024, iterations: 3) @bits = BitArray.new(size) @size =
size @seeds = seed(iterations) end
def seed(n) seeds = [] n.times do seed = SecureRandom.hex(3).to_i(16)
seeds.push(seed) end seeds end
def seed(iterations) (1..iterations).map do SecureRandom.hex(3).to_i(16) end end because Ruby
def initialize(size: 1024, iterations: 3) @bits = BitArray.new(size) @size =
size @seeds = seed(iterations) end
def hash(str, seed) hash = MurmurHash3::V32.str_hash(str, seed) hash % @size
end
def indices_of(str) @seeds.map { |seed| hash(str, seed) } end
def add(str) indices_of(str).each { |i| @bits[i] = 1 } end
def test(str) indices_of(str).all? { |i| @bits[i] == 1 } end
a test drive
A benchmark create a bloom filter with 1024 bits insert
900 values test 2048 values
$ ruby benchmark.rb ### V1 Bloom filter size: 1024. Inserted
values: 900. Tested values: 2048. Positive tests: 1532. False positives: 632. ### V2 Bloom filter size: 1024. Inserted values: 900. Tested values: 2048. Positive tests: 1816. False positives: 916.
$ ruby benchmark.rb ### V1 Bloom filter size: 1024. Inserted
values: 900. Tested values: 2048. Positive tests: 1532. False positives: 632. ### V2 Bloom filter size: 1024. Inserted values: 900. Tested values: 2048. Positive tests: 1816. False positives: 916.
$ ruby benchmark.rb ### V1 Bloom filter size: 1024. Inserted
values: 900. Tested values: 2048. Positive tests: 1532. False positives: 632. ### V2 Bloom filter size: 1024. Inserted values: 900. * 3 = 2700 Tested values: 2048. Positive tests: 1816. False positives: 916.
$ ruby benchmark_v2.rb ### V1 Bloom filter size: 1024. Inserted
values: 300. Tested values: 2048. Positive tests: 729. False positives: 429. ### V2 Bloom filter size: 1024. Inserted values: 300. Tested values: 2048. Positive tests: 627. False positives: 327.
$ ruby benchmark_v2.rb ### V1 Bloom filter size: 1024. Inserted
values: 300. Tested values: 2048. Positive tests: 729. False positives: 429. ### V2 Bloom filter size: 1024. Inserted values: 300. Tested values: 2048. Positive tests: 627. False positives: 327.
Things to consider: the expected amount of entries influences performance
the number of hash functions influences performance Things to consider:
calculating the optimal size & number of hash functions is
a solved problem Things to consider:
calculating the optimal size & number of hash functions is
a solved problem • false positive rate • expected number of items Things to consider:
benchmark, benchmark, benchmark estimate, estimate, estimate Things to consider:
into the wild
None
None
None
id: 1 id: 2 “fernando” “mendes” “miguel” “palhas”
id: 1 id: 2 “fernando” “mendes” “miguel” “palhas” add(“m”) add(“p”)
None
@fribmendes @frmendes Fernando Mendes