Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
A Look Into Bloom Filters
Search
Fernando Mendes
October 07, 2016
Programming
0
400
A Look Into Bloom Filters
Fernando Mendes
October 07, 2016
Tweet
Share
More Decks by Fernando Mendes
See All by Fernando Mendes
you. and the morals of technology
fribmendes
1
130
Knee-Deep Into P2P: A Tale of Fail (PWL Porto)
fribmendes
0
57
Knee-Deep Into P2P: A Tale of Fail (ElixirConf EU 2018 version)
fribmendes
0
150
Knee-Deep Into P2P: A Tale of Fail (non-Elixir)
fribmendes
0
170
Bloom Filters: A Look Into Ruby
fribmendes
0
110
Programming WTF: HTML & CSS
fribmendes
4
150
Ruby: A (pointless) Workshop
fribmendes
1
160
Elixir: A Talk For College Students
fribmendes
0
160
Riding Rails
fribmendes
0
100
Other Decks in Programming
See All in Programming
F#で自在につくる静的ブログサイト - 関数型まつり2025
pizzacat83
0
310
統一感のある Go コードを生成 AI の力で手にいれる
otakakot
0
3k
無関心の谷
kanayannet
0
180
業務自動化をJavaとSeleniumとAWS Lambdaで実現した方法
greenflagproject
1
120
今ならAmazon ECSのサービス間通信をどう選ぶか / Selection of ECS Interservice Communication 2025
tkikuc
11
2.8k
イベントストーミングから始めるドメイン駆動設計
jgeem
4
870
KotlinConf 2025 現地で感じたServer-Side Kotlin
n_takehata
1
220
Gleamという選択肢
comamoca
6
740
The Evolution of Enterprise Java with Jakarta EE 11 and Beyond
ivargrimstad
1
830
Spring gRPC で始める gRPC 入門 / Introduction to gRPC with Spring gRPC
mackey0225
2
520
Webからモバイルへ Vue.js × Capacitor 活用事例
naokihaba
0
740
GraphRAGの仕組みまるわかり
tosuri13
7
450
Featured
See All Featured
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
161
15k
Typedesign – Prime Four
hannesfritz
42
2.7k
Large-scale JavaScript Application Architecture
addyosmani
512
110k
Facilitating Awesome Meetings
lara
54
6.4k
Build your cross-platform service in a week with App Engine
jlugia
231
18k
Making the Leap to Tech Lead
cromwellryan
134
9.3k
StorybookのUI Testing Handbookを読んだ
zakiyama
30
5.8k
The Language of Interfaces
destraynor
158
25k
RailsConf 2023
tenderlove
30
1.1k
Rails Girls Zürich Keynote
gr2m
94
14k
Bash Introduction
62gerente
614
210k
It's Worth the Effort
3n
184
28k
Transcript
bloom filters a look into
a look into bloom filters
@fribmendes @frmendes
@cesiuminho
@cesiuminho
@coderdojominho
We design and develop thoughtful digital products. BRAGA & BOSTON
@mirrorconf @rubyconfpt
wat the wtf is a bloom filter
“A bloom filter is a space-efficient probabilistic data structure, conceived
by Burton Howard Bloom in 1970 (…) a query returns either possibly in set or definitely not in set.” - Wikipedia, 2016
A funky array with hash functions that’s supposed to be
really really small.
bloom filter do you have ‘abc’ in there?
bloom filter i definitely do not do you have ‘abc’
in there?
how about some ‘xyz’? bloom filter i definitely do not
i mean, yeah, probably bloom filter how about some ‘xyz’?
SERVER
Can I visit “pixels.camp”? SERVER
SERVER Can I visit “pixels.camp”?
Can I visit “pixels.camp”? SERVER CLIENT bloom filter
Pre-filling the bloom filter
add(‘totallynotfake.com’)
hash(‘totallynotfake.com’)
hash(‘totallynotfake.com’)
hash(‘clickformoney.com’)
Can I visit “pixels.camp”? CLIENT
hash(‘pixels.camp’) Can I visit “pixels.camp”? CLIENT
yes! Can I visit “pixels.camp”? CLIENT
Can I visit “github.com”? CLIENT
hash(‘github.com’) CLIENT Can I visit “github.com”?
nope. Can I visit “github.com”? CLIENT
SERVER Can I visit “github.com”?
you’re good to go Can I visit “github.com”? SERVER
“A bloom filter is a space-efficient probabilistic data structure, conceived
by Burton Howard Bloom in 1970 (…) a query returns either possibly in set or definitely not in set.” - Wikipedia, 2016
“A bloom filter is a space-efficient probabilistic data structure, conceived
by Burton Howard Bloom in 1970 (…) a query returns either possibly in set or definitely not in set.” - Wikipedia, 2016
“A bloom filter is a space-efficient probabilistic data structure, conceived
by Burton Howard Bloom in 1970 (…) a query returns either possibly in set or definitely not in set.” - Wikipedia, 2016
Things to consider: bloom filters do inclusion testing
Things to consider: bloom filters turn big data into tiny
data
Things to consider: bloom filters turn false into true
Things to consider: your application must allow false positives
diving into it
module MaliciousUrl class Filter end end
module MaliciousUrl class Filter def initialize @filter = Hash.new end
end end
module MaliciousUrl class Filter def add(url) @filter[url] = true end
end end
module MaliciousUrl class Filter def test(url) @filter[url] end end end
instant access™
instant access™ space complexity: saving key-value tuples
instant access™ space complexity: saving key-value tuples solution: bit arrays
module MaliciousUrl class Filter def initialize(size: 1024) @bits = BitArray.new(size)
@fnv = FNV.new @size = size end end end
module MaliciousUrl class Filter def hash(str) @fnv.fnv1a_32(str) % @size end
end end
module MaliciousUrl class Filter def add(str) index = hash(str) @bits[index]
= 1 end end end
module MaliciousUrl class Filter def test(str) index = hash(str) @bits[index]
== 1 end end end
instant access™
instant access™ space-efficiency
instant access™ space-efficiency small universe == more collisions
instant access™ space-efficiency small universe == more collisions solution: more
hashes
def initialize(size: 1024, iterations: 3) @bits = BitArray.new(size) @size =
size @seeds = seed(iterations) end
def initialize(size: 1024, iterations: 3) @bits = BitArray.new(size) @size =
size @seeds = seed(iterations) end
def initialize(size: 1024, iterations: 3) @bits = BitArray.new(size) @size =
size @seeds = seed(iterations) end
def seed(n) seeds = [] n.times do seed = SecureRandom.hex(3).to_i(16)
seeds.push(seed) end seeds end
def seed(iterations) (1..iterations).map do SecureRandom.hex(3).to_i(16) end end because Ruby
def initialize(size: 1024, iterations: 3) @bits = BitArray.new(size) @size =
size @seeds = seed(iterations) end
def hash(str, seed) hash = MurmurHash3::V32.str_hash(str, seed) hash % @size
end
def indices_of(str) @seeds.map { |seed| hash(str, seed) } end
def add(str) indices_of(str).each { |i| @bits[i] = 1 } end
def test(str) indices_of(str).all? { |i| @bits[i] == 1 } end
a test drive
A benchmark create a bloom filter with 1024 bits insert
900 values test 2048 values
$ ruby benchmark.rb ### V1 Bloom filter size: 1024. Inserted
values: 900. Tested values: 2048. Positive tests: 1532. False positives: 632. ### V2 Bloom filter size: 1024. Inserted values: 900. Tested values: 2048. Positive tests: 1816. False positives: 916.
$ ruby benchmark.rb ### V1 Bloom filter size: 1024. Inserted
values: 900. Tested values: 2048. Positive tests: 1532. False positives: 632. ### V2 Bloom filter size: 1024. Inserted values: 900. Tested values: 2048. Positive tests: 1816. False positives: 916.
$ ruby benchmark.rb ### V1 Bloom filter size: 1024. Inserted
values: 900. Tested values: 2048. Positive tests: 1532. False positives: 632. ### V2 Bloom filter size: 1024. Inserted values: 900. * 3 = 2700 Tested values: 2048. Positive tests: 1816. False positives: 916.
$ ruby benchmark_v2.rb ### V1 Bloom filter size: 1024. Inserted
values: 300. Tested values: 2048. Positive tests: 729. False positives: 429. ### V2 Bloom filter size: 1024. Inserted values: 300. Tested values: 2048. Positive tests: 627. False positives: 327.
$ ruby benchmark_v2.rb ### V1 Bloom filter size: 1024. Inserted
values: 300. Tested values: 2048. Positive tests: 729. False positives: 429. ### V2 Bloom filter size: 1024. Inserted values: 300. Tested values: 2048. Positive tests: 627. False positives: 327.
Things to consider: the expected amount of entries influences performance
the number of hash functions influences performance Things to consider:
calculating the optimal size & number of hash functions is
a solved problem Things to consider:
calculating the optimal size & number of hash functions is
a solved problem • false positive rate • expected number of items Things to consider:
benchmark, benchmark, benchmark estimate, estimate, estimate Things to consider:
into the wild
None
None
None
id: 1 id: 2 “fernando” “mendes” “miguel” “palhas”
id: 1 id: 2 “fernando” “mendes” “miguel” “palhas” add(“m”) add(“p”)
None
@fribmendes @frmendes Fernando Mendes