Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Knee-Deep Into P2P: A Tale of Fail (PWL Porto)
Search
Fernando Mendes
May 23, 2018
Programming
0
65
Knee-Deep Into P2P: A Tale of Fail (PWL Porto)
Fernando Mendes
May 23, 2018
Tweet
Share
More Decks by Fernando Mendes
See All by Fernando Mendes
you. and the morals of technology
fribmendes
1
140
Knee-Deep Into P2P: A Tale of Fail (ElixirConf EU 2018 version)
fribmendes
0
170
Knee-Deep Into P2P: A Tale of Fail (non-Elixir)
fribmendes
0
180
A Look Into Bloom Filters
fribmendes
0
480
Bloom Filters: A Look Into Ruby
fribmendes
0
120
Programming WTF: HTML & CSS
fribmendes
4
160
Ruby: A (pointless) Workshop
fribmendes
1
160
Elixir: A Talk For College Students
fribmendes
0
170
Riding Rails
fribmendes
0
110
Other Decks in Programming
See All in Programming
脳の「省エネモード」をデバッグする ~System 1(直感)と System 2(論理)の切り替え~
panda728
PRO
0
120
ローカルLLMを⽤いてコード補完を⾏う VSCode拡張機能を作ってみた
nearme_tech
PRO
0
150
Rubyで鍛える仕組み化プロヂュース力
muryoimpl
0
160
Vibe codingでおすすめの言語と開発手法
uyuki234
0
110
안드로이드 9년차 개발자, 프론트엔드 주니어로 커리어 리셋하기
maryang
1
130
認証・認可の基本を学ぼう前編
kouyuume
0
270
愛される翻訳の秘訣
kishikawakatsumi
3
340
The Art of Re-Architecture - Droidcon India 2025
siddroid
0
120
公共交通オープンデータ × モバイルUX 複雑な運行情報を 『直感』に変換する技術
tinykitten
PRO
0
160
著者と進める!『AIと個人開発したくなったらまずCursorで要件定義だ!』
yasunacoffee
0
160
Kotlin Multiplatform Meetup - Compose Multiplatform 외부 의존성 아키텍처 설계부터 운영까지
wisemuji
0
120
Basic Architectures
denyspoltorak
0
100
Featured
See All Featured
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.8k
Future Trends and Review - Lecture 12 - Web Technologies (1019888BNR)
signer
PRO
0
3.1k
Paper Plane
katiecoart
PRO
0
44k
SEO in 2025: How to Prepare for the Future of Search
ipullrank
3
3.3k
Gemini Prompt Engineering: Practical Techniques for Tangible AI Outcomes
mfonobong
2
230
Design in an AI World
tapps
0
98
Applied NLP in the Age of Generative AI
inesmontani
PRO
3
2k
Google's AI Overviews - The New Search
badams
0
870
The SEO identity crisis: Don't let AI make you average
varn
0
35
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
128
55k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
980
Product Roadmaps are Hard
iamctodd
PRO
55
12k
Transcript
Knee-Deep Into P2P A Tale of Fail @fribmendes
Knee-Deep Into P2P A Tale of Fail @fribmendes
None
None
None
None
None
I don’t know how to smart office
I don’t know how to smart office … what now?
@fribmendes me failing at photoshop
None
I don’t know how to smart office … what now?
None
None
None
None
Step 1: receive new connections
Step 1: receive new connections Step 2: accept and send
messages
Step 1: receive new connections Step 2: accept and send
messages Step 3: do a bunch of Steps 1 and 2
Step 1: receive new connections
None
defp accept_loop(pid, server_socket) do {:ok, client} = :gen_tcp.accept(server_socket) :inet.setopts(client, [active:
true]) :gen_tcp.controlling_process(client, pid) Gossip.accept(pid, client) accept_loop(pid, server_socket) end
defp accept_loop(pid, server_socket) do {:ok, client} = :gen_tcp.accept(server_socket) :inet.setopts(client, [active:
true]) :gen_tcp.controlling_process(client, pid) Gossip.accept(pid, client) accept_loop(pid, server_socket) end
Step 1: receive new connections Step 2: accept and send
messages
None
def recv_loop(pid, socket) do receive do {:tcp, _port, msg} ->
# process an incoming message {:tcp_closed, port} -> # close the sockets {:send, msg} -> # send an outgoing message end end end
Step 1: receive new connections Step 2: accept and send
messages Step 3: do a bunch of Steps 1 and 2
Raspberry Pi #1 Raspberry Pi #2
None
None
None
“Does it scale?”
None
None
g
Gnutella
Gnutella
Gnutella
Gnutella
Gnutella
g
g (gnutella2)
Gnutella
G2/Gnutella2
G2/Gnutella2
G2/Gnutella2
G2/Gnutella2
None
None
None
None
None
HyParView
None
None
None
None
None
None
None
None
Plumtrees
Optimal number of messages
But you can’t afford to lose nodes
None
None
None
None
None
None
None
None
None
None
None
“Aha! It works on my computer!”
“Aha! It works on my computer!”
“Great but we need something to show”
“Great but we need something to show” (aka Raspberry Pi
time)
“Guys… Is this a bomb? Are we going to die?”
— @naps62
“Hey, I can borrow™ someone else’s code”
None
None
None
you shall not pass!
Stick everything on Raspberry Pi’s
Things running on one Raspberry Pi
Things running on one Raspberry Pi ✓BEAM
Things running on one Raspberry Pi ✓BEAM ✓thebox (sensors)
Things running on one Raspberry Pi ✓BEAM ✓thebox (sensors) ✓Phoenix
app
Things running on one Raspberry Pi ✓BEAM (x2) ✓thebox (sensors)
✓Phoenix app
Things running on one Raspberry Pi ✓BEAM (x2) ✓thebox (sensors)
✓Phoenix app ✓Postgres
Things running on one Raspberry Pi ✓BEAM (x2) ✓thebox (sensors)
✓Phoenix app ✓Postgres ✓Cassandra
Things running on one Raspberry Pi ✓BEAM (x2) ✓thebox (sensors)
✓Phoenix app ✓Postgres ✓Cassandra it works!
None
None
None
“Looking good! Everything’s working!”
lol, nope
State of each node:
State of each node: • Last sensor readings
State of each node: • Last sensor readings • Network
map (MAC-IP)
State of each node: • Last sensor readings • Network
map (MAC-IP) • Target values
State of each node: • Last sensor readings • Network
map (MAC-IP) • Target values
None
How do we handle concurrency?
None
None
No database locks. No transactions. You’re on your own, kiddo.
Vector Clocks
None
None
None
None
None
None
None
None
Vector = (1, 0) Vector = (0, 1)
CAP Theorem
CAP Theorem “you’re a programmer. you can’t have nice things.”
consistency availability partitioning
consistency availability partitioning
None
Eventual Consistency
CRDTs
None
Operation-Based CRDT
Operation-Based CRDT commutative but not idempotent update exactly once
no CRDTs
no CRDTs
no CRDTs
no CRDTs
Op-based CRDTs
Op-based CRDTs
Op-based CRDTs
Op-based CRDTs
State-Based CRDT
State-Based CRDT commutative and idempotent heavier on the network
State-based CRDTs
State-based CRDTs
State-based CRDTs
State-based CRDTs
None
None
None
None
None
None
None
None
Wrapping up
System resources matter
System resources matter your algorithms should account for them
There are models. Use them.
Distributed System Checklist
Distributed System Checklist •Is the number of processes known or
finite?
Distributed System Checklist •Is the number of processes known or
finite? •Is there a global notion of time?
Distributed System Checklist •Is the number of processes known or
finite? •Is there a global notion of time? •Is the network reliable?
Distributed System Checklist •Is the number of processes known or
finite? •Is there a global notion of time? •Is the network reliable? •Is there full connectivity?
Distributed System Checklist •Is the number of processes known or
finite? •Is there a global notion of time? •Is the network reliable? •Is there full connectivity? •What happens when a process crashes?
It really doesn’t change that much
CRDTs aren’t a golden hammer
Reinventing the wheel is stupid
None
Knee-Deep Into P2P A Tale of Fail @fribmendes