Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Knee-Deep Into P2P: A Tale of Fail (PWL Porto)
Search
Fernando Mendes
May 23, 2018
Programming
0
59
Knee-Deep Into P2P: A Tale of Fail (PWL Porto)
Fernando Mendes
May 23, 2018
Tweet
Share
More Decks by Fernando Mendes
See All by Fernando Mendes
you. and the morals of technology
fribmendes
1
130
Knee-Deep Into P2P: A Tale of Fail (ElixirConf EU 2018 version)
fribmendes
0
160
Knee-Deep Into P2P: A Tale of Fail (non-Elixir)
fribmendes
0
170
A Look Into Bloom Filters
fribmendes
0
400
Bloom Filters: A Look Into Ruby
fribmendes
0
110
Programming WTF: HTML & CSS
fribmendes
4
160
Ruby: A (pointless) Workshop
fribmendes
1
160
Elixir: A Talk For College Students
fribmendes
0
160
Riding Rails
fribmendes
0
100
Other Decks in Programming
See All in Programming
MCPで実現できる、Webサービス利用体験について
syumai
7
2.5k
CEDEC2025 長期運営ゲームをあと10年続けるための0から始める自動テスト ~4000項目を50%自動化し、月1→毎日実行にした3年間~
akatsukigames_tech
0
120
マイコンでもRustのtestがしたい その2/KernelVM Tokyo 18
tnishinaga
2
1.9k
Scale out your Claude Code ~自社専用Agentで10xする開発プロセス~
yukukotani
9
1.9k
Flutter로 Gemini와 MCP를 활용한 Agentic App 만들기 - 박제창 2025 I/O Extended Seoul
itsmedreamwalker
0
130
202507_ADKで始めるエージェント開発の基本 〜デモを通じて紹介〜(奥田りさ)The Basics of Agent Development with ADK — A Demo-Focused Introduction
risatube
PRO
6
1.4k
Strands Agents で実現する名刺解析アーキテクチャ
omiya0555
1
120
Portapad紹介プレゼンテーション
gotoumakakeru
1
120
なぜ今、Terraformの本を書いたのか? - 著者陣に聞く!『Terraformではじめる実践IaC』登壇資料
fufuhu
4
560
あなたとJIT, 今すぐアセンブ ル
sisshiki1969
1
590
一人でAIプロダクトを作るための工夫 〜技術選定・開発プロセス編〜 / I want AI to work harder
rkaga
10
2.4k
Flutterと Vibe Coding で個人開発!
hyshu
1
250
Featured
See All Featured
Building a Modern Day E-commerce SEO Strategy
aleyda
43
7.4k
Bash Introduction
62gerente
614
210k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
It's Worth the Effort
3n
185
28k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
131
19k
Agile that works and the tools we love
rasmusluckow
329
21k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
880
A Tale of Four Properties
chriscoyier
160
23k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Designing Experiences People Love
moore
142
24k
YesSQL, Process and Tooling at Scale
rocio
173
14k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
Transcript
Knee-Deep Into P2P A Tale of Fail @fribmendes
Knee-Deep Into P2P A Tale of Fail @fribmendes
None
None
None
None
None
I don’t know how to smart office
I don’t know how to smart office … what now?
@fribmendes me failing at photoshop
None
I don’t know how to smart office … what now?
None
None
None
None
Step 1: receive new connections
Step 1: receive new connections Step 2: accept and send
messages
Step 1: receive new connections Step 2: accept and send
messages Step 3: do a bunch of Steps 1 and 2
Step 1: receive new connections
None
defp accept_loop(pid, server_socket) do {:ok, client} = :gen_tcp.accept(server_socket) :inet.setopts(client, [active:
true]) :gen_tcp.controlling_process(client, pid) Gossip.accept(pid, client) accept_loop(pid, server_socket) end
defp accept_loop(pid, server_socket) do {:ok, client} = :gen_tcp.accept(server_socket) :inet.setopts(client, [active:
true]) :gen_tcp.controlling_process(client, pid) Gossip.accept(pid, client) accept_loop(pid, server_socket) end
Step 1: receive new connections Step 2: accept and send
messages
None
def recv_loop(pid, socket) do receive do {:tcp, _port, msg} ->
# process an incoming message {:tcp_closed, port} -> # close the sockets {:send, msg} -> # send an outgoing message end end end
Step 1: receive new connections Step 2: accept and send
messages Step 3: do a bunch of Steps 1 and 2
Raspberry Pi #1 Raspberry Pi #2
None
None
None
“Does it scale?”
None
None
g
Gnutella
Gnutella
Gnutella
Gnutella
Gnutella
g
g (gnutella2)
Gnutella
G2/Gnutella2
G2/Gnutella2
G2/Gnutella2
G2/Gnutella2
None
None
None
None
None
HyParView
None
None
None
None
None
None
None
None
Plumtrees
Optimal number of messages
But you can’t afford to lose nodes
None
None
None
None
None
None
None
None
None
None
None
“Aha! It works on my computer!”
“Aha! It works on my computer!”
“Great but we need something to show”
“Great but we need something to show” (aka Raspberry Pi
time)
“Guys… Is this a bomb? Are we going to die?”
— @naps62
“Hey, I can borrow™ someone else’s code”
None
None
None
you shall not pass!
Stick everything on Raspberry Pi’s
Things running on one Raspberry Pi
Things running on one Raspberry Pi ✓BEAM
Things running on one Raspberry Pi ✓BEAM ✓thebox (sensors)
Things running on one Raspberry Pi ✓BEAM ✓thebox (sensors) ✓Phoenix
app
Things running on one Raspberry Pi ✓BEAM (x2) ✓thebox (sensors)
✓Phoenix app
Things running on one Raspberry Pi ✓BEAM (x2) ✓thebox (sensors)
✓Phoenix app ✓Postgres
Things running on one Raspberry Pi ✓BEAM (x2) ✓thebox (sensors)
✓Phoenix app ✓Postgres ✓Cassandra
Things running on one Raspberry Pi ✓BEAM (x2) ✓thebox (sensors)
✓Phoenix app ✓Postgres ✓Cassandra it works!
None
None
None
“Looking good! Everything’s working!”
lol, nope
State of each node:
State of each node: • Last sensor readings
State of each node: • Last sensor readings • Network
map (MAC-IP)
State of each node: • Last sensor readings • Network
map (MAC-IP) • Target values
State of each node: • Last sensor readings • Network
map (MAC-IP) • Target values
None
How do we handle concurrency?
None
None
No database locks. No transactions. You’re on your own, kiddo.
Vector Clocks
None
None
None
None
None
None
None
None
Vector = (1, 0) Vector = (0, 1)
CAP Theorem
CAP Theorem “you’re a programmer. you can’t have nice things.”
consistency availability partitioning
consistency availability partitioning
None
Eventual Consistency
CRDTs
None
Operation-Based CRDT
Operation-Based CRDT commutative but not idempotent update exactly once
no CRDTs
no CRDTs
no CRDTs
no CRDTs
Op-based CRDTs
Op-based CRDTs
Op-based CRDTs
Op-based CRDTs
State-Based CRDT
State-Based CRDT commutative and idempotent heavier on the network
State-based CRDTs
State-based CRDTs
State-based CRDTs
State-based CRDTs
None
None
None
None
None
None
None
None
Wrapping up
System resources matter
System resources matter your algorithms should account for them
There are models. Use them.
Distributed System Checklist
Distributed System Checklist •Is the number of processes known or
finite?
Distributed System Checklist •Is the number of processes known or
finite? •Is there a global notion of time?
Distributed System Checklist •Is the number of processes known or
finite? •Is there a global notion of time? •Is the network reliable?
Distributed System Checklist •Is the number of processes known or
finite? •Is there a global notion of time? •Is the network reliable? •Is there full connectivity?
Distributed System Checklist •Is the number of processes known or
finite? •Is there a global notion of time? •Is the network reliable? •Is there full connectivity? •What happens when a process crashes?
It really doesn’t change that much
CRDTs aren’t a golden hammer
Reinventing the wheel is stupid
None
Knee-Deep Into P2P A Tale of Fail @fribmendes