Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
セーリング分析のデータと難しさ
Search
Kosuke Fujita
May 12, 2019
Technology
0
1.1k
セーリング分析のデータと難しさ
#Sports Analyst Meetup #2で発表したLT資料です。
https://spoana.connpass.com/event/126625/
Kosuke Fujita
May 12, 2019
Tweet
Share
More Decks by Kosuke Fujita
See All by Kosuke Fujita
私とYouTubeの幸せなキョリ感
fuji_tako33
0
110
素人が将棋AI勉強してみた
fuji_tako33
0
540
M-1グランプリ直前!漫才の可視化に挑戦してみた
fuji_tako33
0
130
面白いダジャレを言うと、リアルに布団がふっ飛ぶ装置を作った
fuji_tako33
0
1.5k
姿勢データを用いたダーツ命中予測.pdf
fuji_tako33
0
900
digdagで機械学習モデルの自動更新がしたい!
fuji_tako33
1
810
ツッコミを入れてくれるAIスピーカー「Ahoca」を作った話
fuji_tako33
0
170
データで振り返る セーリング競技江ノ島インカレ2015
fuji_tako33
0
52
Other Decks in Technology
See All in Technology
クラウド開発の舞台裏とSRE文化の醸成 / SRE NEXT 2025 Lunch Session
kazeburo
1
590
AI エージェントと考え直すデータ基盤
na0
20
7.9k
サービスを止めるな! DDoS攻撃へのスマートな備えと最前線の事例
coconala_engineer
1
180
大量配信システムにおけるSLOの実践:「見えない」信頼性をSLOで可視化
plaidtech
PRO
0
390
アクセスピークを制するオートスケール再設計: 障害を乗り越えKEDAで実現したリソース管理の最適化
myamashii
1
670
ClaudeCodeにキレない技術
gtnao
1
870
AWS 怖い話 WAF編 @fillz_noh #AWSStartup #AWSStartup_Kansai
fillznoh
0
130
伴走から自律へ: 形式知へと導くSREイネーブリングによる プロダクトチームの信頼性オーナーシップ向上 / SRE NEXT 2025
visional_engineering_and_design
3
460
対話型音声AIアプリケーションの信頼性向上の取り組み
ivry_presentationmaterials
3
1.1k
組織内、組織間の資産保護に必要なアイデンティティ基盤と関連技術の最新動向
fujie
0
280
[SRE NEXT 2025] すみずみまで暖かく照らすあなたの太陽でありたい
carnappopper
2
470
[SRE NEXT] ARR150億円_エンジニア140名_27チーム_17プロダクトから始めるSLO.pdf
satos
5
3k
Featured
See All Featured
GitHub's CSS Performance
jonrohan
1031
460k
Making the Leap to Tech Lead
cromwellryan
134
9.4k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
A better future with KSS
kneath
238
17k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
35
2.4k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
Bash Introduction
62gerente
613
210k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
47
9.6k
Facilitating Awesome Meetings
lara
54
6.5k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.9k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
282
13k
Transcript
セーリング分析の データと難しさ Sports Analyst Meetup #2 藤田 洸介
自己紹介 ▸ 名前 藤田洸介 ▸ 職業 データサイエンティスト ▸ スポーツ歴 ▹ 小〜中 ▹
剣道(初段)、サッカー、バレーボール ▹ 高校 ▹ ヨット(セーリング)部 ▹ 大学〜今 ▹ 出身高校のヨット部コーチ(7年目) ▹ ダーツ(3ヶ月目) 2
3 セーリングとは?
4 こんなイメージ 画像:https://www.asahi.com/olympics/2020/game/canoe/
5 嘘つきました
6 カヌー 画像:https://www.asahi.com/olympics/2020/game/canoe/
7 書いてある
セーリング(ヨット) ▸ 動力は風のみ ▸ 競技は海で開催 ▸ 競技用は1〜2人乗り ▸ 決められたコースを回って 順位を競う
▸ 日本選手の世界ランク ▹ 女子:1位 ▹ 男子:4位 http://bulkhead.jp/
話すこと ▸ セーリング分析におけるデータと難しさ ▸ データ収集+可視化Webアプリ作ってる話 (ちょっとだけ) 9
セーリング分析におけるデータ ▸ 船のデータ ▹ 航路、船の傾き ▹ セールの形 ▸ 気象データ ▹
風向・風速・波 ▸ その他データ ▹ 練習メニュー ▹ 人 10
セーリング分析におけるデータ 11 どうやって集める? ▸ 船のデータ ▹ 航路、船の傾き ▹ セールの形 ▸
気象データ ▹ 風向・風速・波 ▸ その他データ ▹ 練習メニュー ▹ 人
セーリング分析におけるデータ ▸ 船のデータ ▹ 航路、船の傾き ▹ セールの形 ▸ 気象データ ▹
風向・風速・波 ▸ その他データ ▹ 練習メニュー ▹ 人 12 これがないと始まらない センサーが必要
セーリング分析におけるデータ ▸ 船のデータ ▹ 航路、船の傾き ▹ セールの形 ▸ 気象データ ▹
風向・風速・波 ▸ その他データ ▹ 練習メニュー ▹ 人 13 1時間単位なら 気象庁から取得可能だが 風は1秒単位で変化している
セーリング分析におけるデータ ▸ 船のデータ ▹ 航路、船の傾き ▹ セールの形 ▸ 気象データ ▹
風向・風速・波 ▸ その他データ ▹ 練習メニュー ▹ 人 14 手入力で集められるが、 当然セーリング向けデータ収集 ツールなど無い
15 セーリング分析の難しさ① データ収集が難しい
データ収集が難しい理由 ▸ センサーが防水であることが必須 ▹ 航路、スピード、傾きを取るためには 防水のGPSトラッカー、ジャイロセンサーが 必要 ▸ 場所が固定できない ▹
海の上を縦横無尽に走りながら練習するの で、定点観測は不可能 16
データ収集が難しい理由 ▸ センサーが防水であることが必須 ▹ 航路、スピード、傾きを取るためには 防水のGPSトラッカー、ジャイロセンサーが 必要 ▸ 場所が固定できない ▹
海の上を縦横無尽に走りながら練習する ので、定点観測は不可能 17 防水のGPSトラッカー、ジャイロセンサーが 必要
データ収集が難しい理由 ▸ センサーが防水であることが必須 ▹ 航路、スピード、傾きを取るためには 防水のGPSトラッカー、ジャイロセンサーが 必要 ▸ 場所が固定できない ▹
海の上を縦横無尽に走りながら練習する ので、定点観測は不可能 18 防水のGPSトラッカー、ジャイロセンサーが 必要 スマホでいいじゃん!
スマホはセンサーとして非常に優秀 ▸ 各種センサーがついてる ▹ GPS、ジャイロ、加速度、カメラ・・・ ▸ データを集めるアプリもある ▸ バッテリー長持ち ▸
インターネット通信 ▸ カバーをつければ防水に ▸ だれでも持ってる 19 何かしらデータを集めたいときは、 まずスマホを使えないか考えてみると良いかも
船にスマホを積んで航路とスピードを 可視化してみた 20 スピードが遅い スピードが速い
21 スピードが遅い スピードが速い ➔ 風が弱い ➔ 風が強い 船にスマホを積んで航路とスピードを 可視化してみた
22 セーリング分析の難しさ② 同じ自然条件で比較ができない
同じ自然条件で比較ができない ▸ 課題 ▹ たとえば、船のスピードが落ちた要因が、風 の変化によるものか、船の操作によるもの か問題の切り分けが難しい ▸ どう対処する? ▹
今後の課題。データを集めながら解決策を 探す ▹ 条件が揃わない前提でどうデータを活用で きるか考えることが重要かも 23
まとめ ▸ セーリング分析のデータ ▹ 船 ⇒ スマホを使うことで可能に ▹ 気象 ⇒
大きな粒度は気象庁。細かいのは無理。 ▹ その他 ⇒手動で記録 ▸ セーリング分析の難しさ ▹ データ収集が難しい ▹ スマホはとても良いツール! ▹ 細かい気象データはかなり難しい ▹ 同じ自然条件で比較ができない ▹ 条件が揃わない前提での活用を考える 24
25 こんな難しさもあるセーリング分析ですが 分析の力でヨット部を強くするために データ収集+可視化Webアプリ作ってます
26 データ入力 練習の振り返り ランキング 選手 A 選手 B 選手 C
選手 A 選手 B 選手 C スマホだけで完結出来るデータ活用ツール
27 開発メンバー Kosuke Fujita エンジニア/アナリスト Takafumi Suzuki エンジニア/アナリスト Mondo Saito
デザイナー ヨット部コーチ 某社ヨット部 某大学ヨット部出身
28 ツールはこれから導入フェーズに入ります 実績が溜まったら 日本初のデータ活用高校ヨット部の事例として またここで発表させてください!
29 END