Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
セーリング分析のデータと難しさ
Search
Kosuke Fujita
May 12, 2019
Technology
0
1.1k
セーリング分析のデータと難しさ
#Sports Analyst Meetup #2で発表したLT資料です。
https://spoana.connpass.com/event/126625/
Kosuke Fujita
May 12, 2019
Tweet
Share
More Decks by Kosuke Fujita
See All by Kosuke Fujita
私とYouTubeの幸せなキョリ感
fuji_tako33
0
110
素人が将棋AI勉強してみた
fuji_tako33
0
540
M-1グランプリ直前!漫才の可視化に挑戦してみた
fuji_tako33
0
130
面白いダジャレを言うと、リアルに布団がふっ飛ぶ装置を作った
fuji_tako33
0
1.5k
姿勢データを用いたダーツ命中予測.pdf
fuji_tako33
0
890
digdagで機械学習モデルの自動更新がしたい!
fuji_tako33
1
800
ツッコミを入れてくれるAIスピーカー「Ahoca」を作った話
fuji_tako33
0
160
データで振り返る セーリング競技江ノ島インカレ2015
fuji_tako33
0
51
Other Decks in Technology
See All in Technology
Javaで作る RAGを活用した Q&Aアプリケーション
recruitengineers
PRO
1
110
Welcome to the LLM Club
koic
0
170
_第3回__AIxIoTビジネス共創ラボ紹介資料_20250617.pdf
iotcomjpadmin
0
160
Navigation3でViewModelにデータを渡す方法
mikanichinose
0
220
Oracle Audit Vault and Database Firewall 20 概要
oracle4engineer
PRO
3
1.7k
監視のこれまでとこれから/sakura monitoring seminar 2025
fujiwara3
11
3.9k
Microsoft Build 2025 技術/製品動向 for Microsoft Startup Tech Community
torumakabe
2
280
【5分でわかる】セーフィー エンジニア向け会社紹介
safie_recruit
0
26k
AIのAIによるAIのための出力評価と改善
chocoyama
2
560
PHP開発者のためのSOLID原則再入門 #phpcon / PHP Conference Japan 2025
shogogg
4
810
ひとり情シスなCTOがLLMと始めるオペレーション最適化 / CTO's LLM-Powered Ops
yamitzky
0
440
Node-REDのFunctionノードでMCPサーバーの実装を試してみた / Node-RED × MCP 勉強会 vol.1
you
PRO
0
110
Featured
See All Featured
Thoughts on Productivity
jonyablonski
69
4.7k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
15
1.5k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
107
19k
Side Projects
sachag
455
42k
Done Done
chrislema
184
16k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
22k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
700
Agile that works and the tools we love
rasmusluckow
329
21k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
8
670
A Modern Web Designer's Workflow
chriscoyier
694
190k
Statistics for Hackers
jakevdp
799
220k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
30
2.1k
Transcript
セーリング分析の データと難しさ Sports Analyst Meetup #2 藤田 洸介
自己紹介 ▸ 名前 藤田洸介 ▸ 職業 データサイエンティスト ▸ スポーツ歴 ▹ 小〜中 ▹
剣道(初段)、サッカー、バレーボール ▹ 高校 ▹ ヨット(セーリング)部 ▹ 大学〜今 ▹ 出身高校のヨット部コーチ(7年目) ▹ ダーツ(3ヶ月目) 2
3 セーリングとは?
4 こんなイメージ 画像:https://www.asahi.com/olympics/2020/game/canoe/
5 嘘つきました
6 カヌー 画像:https://www.asahi.com/olympics/2020/game/canoe/
7 書いてある
セーリング(ヨット) ▸ 動力は風のみ ▸ 競技は海で開催 ▸ 競技用は1〜2人乗り ▸ 決められたコースを回って 順位を競う
▸ 日本選手の世界ランク ▹ 女子:1位 ▹ 男子:4位 http://bulkhead.jp/
話すこと ▸ セーリング分析におけるデータと難しさ ▸ データ収集+可視化Webアプリ作ってる話 (ちょっとだけ) 9
セーリング分析におけるデータ ▸ 船のデータ ▹ 航路、船の傾き ▹ セールの形 ▸ 気象データ ▹
風向・風速・波 ▸ その他データ ▹ 練習メニュー ▹ 人 10
セーリング分析におけるデータ 11 どうやって集める? ▸ 船のデータ ▹ 航路、船の傾き ▹ セールの形 ▸
気象データ ▹ 風向・風速・波 ▸ その他データ ▹ 練習メニュー ▹ 人
セーリング分析におけるデータ ▸ 船のデータ ▹ 航路、船の傾き ▹ セールの形 ▸ 気象データ ▹
風向・風速・波 ▸ その他データ ▹ 練習メニュー ▹ 人 12 これがないと始まらない センサーが必要
セーリング分析におけるデータ ▸ 船のデータ ▹ 航路、船の傾き ▹ セールの形 ▸ 気象データ ▹
風向・風速・波 ▸ その他データ ▹ 練習メニュー ▹ 人 13 1時間単位なら 気象庁から取得可能だが 風は1秒単位で変化している
セーリング分析におけるデータ ▸ 船のデータ ▹ 航路、船の傾き ▹ セールの形 ▸ 気象データ ▹
風向・風速・波 ▸ その他データ ▹ 練習メニュー ▹ 人 14 手入力で集められるが、 当然セーリング向けデータ収集 ツールなど無い
15 セーリング分析の難しさ① データ収集が難しい
データ収集が難しい理由 ▸ センサーが防水であることが必須 ▹ 航路、スピード、傾きを取るためには 防水のGPSトラッカー、ジャイロセンサーが 必要 ▸ 場所が固定できない ▹
海の上を縦横無尽に走りながら練習するの で、定点観測は不可能 16
データ収集が難しい理由 ▸ センサーが防水であることが必須 ▹ 航路、スピード、傾きを取るためには 防水のGPSトラッカー、ジャイロセンサーが 必要 ▸ 場所が固定できない ▹
海の上を縦横無尽に走りながら練習する ので、定点観測は不可能 17 防水のGPSトラッカー、ジャイロセンサーが 必要
データ収集が難しい理由 ▸ センサーが防水であることが必須 ▹ 航路、スピード、傾きを取るためには 防水のGPSトラッカー、ジャイロセンサーが 必要 ▸ 場所が固定できない ▹
海の上を縦横無尽に走りながら練習する ので、定点観測は不可能 18 防水のGPSトラッカー、ジャイロセンサーが 必要 スマホでいいじゃん!
スマホはセンサーとして非常に優秀 ▸ 各種センサーがついてる ▹ GPS、ジャイロ、加速度、カメラ・・・ ▸ データを集めるアプリもある ▸ バッテリー長持ち ▸
インターネット通信 ▸ カバーをつければ防水に ▸ だれでも持ってる 19 何かしらデータを集めたいときは、 まずスマホを使えないか考えてみると良いかも
船にスマホを積んで航路とスピードを 可視化してみた 20 スピードが遅い スピードが速い
21 スピードが遅い スピードが速い ➔ 風が弱い ➔ 風が強い 船にスマホを積んで航路とスピードを 可視化してみた
22 セーリング分析の難しさ② 同じ自然条件で比較ができない
同じ自然条件で比較ができない ▸ 課題 ▹ たとえば、船のスピードが落ちた要因が、風 の変化によるものか、船の操作によるもの か問題の切り分けが難しい ▸ どう対処する? ▹
今後の課題。データを集めながら解決策を 探す ▹ 条件が揃わない前提でどうデータを活用で きるか考えることが重要かも 23
まとめ ▸ セーリング分析のデータ ▹ 船 ⇒ スマホを使うことで可能に ▹ 気象 ⇒
大きな粒度は気象庁。細かいのは無理。 ▹ その他 ⇒手動で記録 ▸ セーリング分析の難しさ ▹ データ収集が難しい ▹ スマホはとても良いツール! ▹ 細かい気象データはかなり難しい ▹ 同じ自然条件で比較ができない ▹ 条件が揃わない前提での活用を考える 24
25 こんな難しさもあるセーリング分析ですが 分析の力でヨット部を強くするために データ収集+可視化Webアプリ作ってます
26 データ入力 練習の振り返り ランキング 選手 A 選手 B 選手 C
選手 A 選手 B 選手 C スマホだけで完結出来るデータ活用ツール
27 開発メンバー Kosuke Fujita エンジニア/アナリスト Takafumi Suzuki エンジニア/アナリスト Mondo Saito
デザイナー ヨット部コーチ 某社ヨット部 某大学ヨット部出身
28 ツールはこれから導入フェーズに入ります 実績が溜まったら 日本初のデータ活用高校ヨット部の事例として またここで発表させてください!
29 END