Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ペアーズでの、Langfuseを中心とした評価ドリブンなリリースサイクルのご紹介
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
fukubaka0825
January 28, 2025
Programming
5
1.3k
ペアーズでの、Langfuseを中心とした評価ドリブンなリリースサイクルのご紹介
Langfuse Night #1 での登壇資料です。
https://connpass.com/event/340099/
fukubaka0825
January 28, 2025
Tweet
Share
More Decks by fukubaka0825
See All by fukubaka0825
ペアーズにおける評価ドリブンな AI Agent 開発のご紹介
fukubaka0825
15
4.2k
ペアーズにおけるAmazon Bedrockを⽤いた障害対応⽀援 ⽣成AIツールの導⼊事例 @ 20241115配信AWSウェビナー登壇
fukubaka0825
7
3.3k
SRE NEXT 2022に学ぶこれからのSREキャリア
fukubaka0825
2
870
Steps toward self-service operations in eureka
fukubaka0825
1
8.1k
SREの探求のすゝめ
fukubaka0825
5
7.9k
Three principles to design your slackbot to be loved in your team
fukubaka0825
0
4.4k
Goでinteractive message slack botを作ってみた
fukubaka0825
0
320
Other Decks in Programming
See All in Programming
izumin5210のプロポーザルのネタ探し #tskaigi_msup
izumin5210
1
140
AI & Enginnering
codelynx
0
120
そのAIレビュー、レビューしてますか? / Are you reviewing those AI reviews?
rkaga
6
4.6k
CSC307 Lecture 10
javiergs
PRO
1
660
インターン生でもAuth0で認証基盤刷新が出来るのか
taku271
0
190
Gemini for developers
meteatamel
0
100
AIで開発はどれくらい加速したのか?AIエージェントによるコード生成を、現場の評価と研究開発の評価の両面からdeep diveしてみる
daisuketakeda
1
2.5k
The Past, Present, and Future of Enterprise Java
ivargrimstad
0
620
Vibe Coding - AI 驅動的軟體開發
mickyp100
0
180
Rust 製のコードエディタ “Zed” を使ってみた
nearme_tech
PRO
0
210
余白を設計しフロントエンド開発を 加速させる
tsukuha
7
2.1k
Fluid Templating in TYPO3 14
s2b
0
130
Featured
See All Featured
Organizational Design Perspectives: An Ontology of Organizational Design Elements
kimpetersen
PRO
1
470
Build your cross-platform service in a week with App Engine
jlugia
234
18k
What's in a price? How to price your products and services
michaelherold
247
13k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
35
2.4k
Facilitating Awesome Meetings
lara
57
6.8k
From π to Pie charts
rasagy
0
130
A Modern Web Designer's Workflow
chriscoyier
698
190k
Jess Joyce - The Pitfalls of Following Frameworks
techseoconnect
PRO
1
69
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
Are puppies a ranking factor?
jonoalderson
1
2.7k
Bioeconomy Workshop: Dr. Julius Ecuru, Opportunities for a Bioeconomy in West Africa
akademiya2063
PRO
1
57
Designing Experiences People Love
moore
144
24k
Transcript
ペアーズでの、Langfuseを中⼼ とした評価ドリブンなリリース サイクルのご紹介 2025/01/28 Langfuse Night #1
About Me Nari | Takashi Narikawa(@fukubaka0825) • 株式会社エウレカ ◦ 2020年に⼊社
▪ SRE Team -> AI Team ◦ MLOps Engineer ◦ 筋トレ、⿇雀、サウナが好き
今⽇のお話しする範囲について • 昨今、注⽬を集めるAIエージェントの話は出てきません • シンプルな⽣成AIモデル API出⼒、ワークフローやRAGアプリケーションの評価 の話がメインです ◦ マルチモーダルの話もでてきません ◦
より複雑なAIエージェント評価でも、単体コンポーネントの評価が⼤前提 で、追加で実⾏経路評価などの観点があるだけ • 上記の範囲で、「ペアーズでの、Langfuseを中⼼とした評価ドリブンなリリース サイクル」を5分 LTでお話しできる範囲でお話しします ◦ 詳しく知りたい⽅は、2024 Pairs Advent Calenderに記載した以下の記事も ご参照 ◦ ペアーズにおける評価ドリブンなリリースサイクル:Langfuseをフル活⽤ したLLMOps基盤
Agenda 1. ペアーズにおけるLLMアプリケーション運⽤課題 2. ペアーズのLLMOps基盤のアーキテクチャ 3. LLMOpsツールとしてのLangfuseの採⽤理由 4. 評価ドリブンなリリースサイクルの全体像 5.
オンライン評価プロセス 6. オフライン評価プロセス 7. 導⼊ステップ 8. 評価データセットの育てはじめ⽅ 9. まとめ
ペアーズにおけるLLMアプリケーション運⽤課題 • LLM APIを活⽤したアプリケーションの運⽤では、以下のような課題が顕著 ◦ 出⼒の評価が難しい ◦ 従来のMLOps⼿法がそのままでは通じない ◦ モデル∕プロンプトの出⼒精度低下(デグレ)の検知の重要性
• 弊社ではLLMアプリケーションを開発運⽤しているのがAI Teamだけでなく、 SRE∕Platform Teamも開発者の⽣産性向上のためのLLM活⽤を戦略の⼀部とし て実施しており、全社的に使えるこういった課題の解決を⽀援する基盤を必要と していた
ペアーズのLLMOps基盤のアーキテクチャ
LLMOpsツールとしてのLangfuseの採⽤理由 • LLMOpsに必要な機能を網羅 ◦ LangfuseはSelf-hostするパターンでも、ログ‧トレース管理、プロンプト マネジメント、評価データセット、実験管理、カスタムスコアによる評価 など、LLMOpsに必要な機能を網羅的に提供 • Self-hostしやすさ ◦
LLMOps系のSaaSソリューションは、⼤規模トラフィックのログ‧トレー スデータ量によるコストが課題で、弊社規模のtoCサービスだと採⽤が難し い ◦ LangfuseはOSSとして提供され、Self-hostすることが可能であり、しかも helm chartまで提供されているので、弊社のメインホスティング先である AWS EKSを⽤いて構築できることも⼤きかった
評価ドリブンなリリースサイクルの全体像
オンライン評価プロセス
オフライン評価プロセス ※LLMアプリケーション統合実験もほぼ同様のフロー
導⼊ステップ
評価データセットの育て始め⽅ • 1. 初期データセット作成 ◦ 10~20問程度からスタートでOK ◦ 例えばシンプルなRAGアプリケーションなどであれば、Ragasで⽣成したシ ングル/マルチホップの問答ケース や他LLMで⽣成したケースの採⽤も検討
◦ ユーザー、ドメインエキスパート評価付きオンラインログトレースがすで にある場合はそちらも使⽤ ▪ 正例/負例(検索不備、⽣成不備、プロンプト命令違反) • 2. オンラインログトレースから追加し継続的に育てていく ◦ 情報検索できていない、不完全回答などを洗い出してケース追加 ◦ このプロセスを通して、評価基準の⾔語化、プロンプト改善にもつなげる
まとめ • LLMアプリケーションの運⽤は従来のMLOpsの⼿法が通じず、かつ出⼒の評価が 難しいことなどが起因して、⾮常に難しい • 上記の課題を解決するために、Langfuseを中枢に据えたLLMOps基盤を⽤いて、 オンライン評価とオフライン評価でリリースを挟み込んだ評価ドリブンなリリー スサイクルを回していくのがおすすめ • 上記を実践するために
◦ まずはアプリケーションのログ‧トレースを保存 ◦ 次にプロンプトマネジメント導⼊と、評価データセット作りを10件から ◦ そこからプロンプト実験と、LLM-as-a-JudgeなどのLLM Evaluatorの仕組 みを、評価基準など不完全で良いので導⼊してみる ◦ これらをまずは実践することで、評価ドリブンなリリースライフサイクル が、評価データセットと評価基準を育てながら回せるようになる
We’re hiring! ペアーズではエンジニアを積極採⽤中! カジュアル⾯談もお待ちしております! (X: @fukubaka0825)
None