Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ペアーズでの、Langfuseを中心とした評価ドリブンなリリースサイクルのご紹介
Search
fukubaka0825
January 28, 2025
Programming
5
1.2k
ペアーズでの、Langfuseを中心とした評価ドリブンなリリースサイクルのご紹介
Langfuse Night #1 での登壇資料です。
https://connpass.com/event/340099/
fukubaka0825
January 28, 2025
Tweet
Share
More Decks by fukubaka0825
See All by fukubaka0825
ペアーズにおける評価ドリブンな AI Agent 開発のご紹介
fukubaka0825
15
4.1k
ペアーズにおけるAmazon Bedrockを⽤いた障害対応⽀援 ⽣成AIツールの導⼊事例 @ 20241115配信AWSウェビナー登壇
fukubaka0825
7
3.3k
SRE NEXT 2022に学ぶこれからのSREキャリア
fukubaka0825
2
870
Steps toward self-service operations in eureka
fukubaka0825
1
8.1k
SREの探求のすゝめ
fukubaka0825
5
7.9k
Three principles to design your slackbot to be loved in your team
fukubaka0825
0
4.4k
Goでinteractive message slack botを作ってみた
fukubaka0825
0
320
Other Decks in Programming
See All in Programming
QAフローを最適化し、品質水準を満たしながらリリースまでの期間を最短化する #RSGT2026
shibayu36
0
1.9k
Combinatorial Interview Problems with Backtracking Solutions - From Imperative Procedural Programming to Declarative Functional Programming - Part 2
philipschwarz
PRO
0
140
チームをチームにするEM
hitode909
0
450
クラウドに依存しないS3を使った開発術
simesaba80
0
220
Unicodeどうしてる? PHPから見たUnicode対応と他言語での対応についてのお伺い
youkidearitai
PRO
0
460
re:Invent 2025 トレンドからみる製品開発への AI Agent 活用
yoskoh
0
620
ゆくKotlin くるRust
exoego
1
200
フルサイクルエンジニアリングをAI Agentで全自動化したい 〜構想と現在地〜
kamina_zzz
0
360
AIの誤りが許されない業務システムにおいて“信頼されるAI” を目指す / building-trusted-ai-systems
yuya4
7
4.3k
Grafana:建立系統全知視角的捷徑
blueswen
0
280
CSC307 Lecture 03
javiergs
PRO
1
470
從冷知識到漏洞,你不懂的 Web,駭客懂 - Huli @ WebConf Taiwan 2025
aszx87410
2
3.3k
Featured
See All Featured
Measuring & Analyzing Core Web Vitals
bluesmoon
9
730
Navigating Team Friction
lara
191
16k
How to Ace a Technical Interview
jacobian
281
24k
Marketing Yourself as an Engineer | Alaka | Gurzu
gurzu
0
110
Ecommerce SEO: The Keys for Success Now & Beyond - #SERPConf2024
aleyda
1
1.8k
Building a A Zero-Code AI SEO Workflow
portentint
PRO
0
240
Data-driven link building: lessons from a $708K investment (BrightonSEO talk)
szymonslowik
1
880
Ruling the World: When Life Gets Gamed
codingconduct
0
120
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
svc-hook: hooking system calls on ARM64 by binary rewriting
retrage
1
50
Taking LLMs out of the black box: A practical guide to human-in-the-loop distillation
inesmontani
PRO
3
2k
Unsuck your backbone
ammeep
671
58k
Transcript
ペアーズでの、Langfuseを中⼼ とした評価ドリブンなリリース サイクルのご紹介 2025/01/28 Langfuse Night #1
About Me Nari | Takashi Narikawa(@fukubaka0825) • 株式会社エウレカ ◦ 2020年に⼊社
▪ SRE Team -> AI Team ◦ MLOps Engineer ◦ 筋トレ、⿇雀、サウナが好き
今⽇のお話しする範囲について • 昨今、注⽬を集めるAIエージェントの話は出てきません • シンプルな⽣成AIモデル API出⼒、ワークフローやRAGアプリケーションの評価 の話がメインです ◦ マルチモーダルの話もでてきません ◦
より複雑なAIエージェント評価でも、単体コンポーネントの評価が⼤前提 で、追加で実⾏経路評価などの観点があるだけ • 上記の範囲で、「ペアーズでの、Langfuseを中⼼とした評価ドリブンなリリース サイクル」を5分 LTでお話しできる範囲でお話しします ◦ 詳しく知りたい⽅は、2024 Pairs Advent Calenderに記載した以下の記事も ご参照 ◦ ペアーズにおける評価ドリブンなリリースサイクル:Langfuseをフル活⽤ したLLMOps基盤
Agenda 1. ペアーズにおけるLLMアプリケーション運⽤課題 2. ペアーズのLLMOps基盤のアーキテクチャ 3. LLMOpsツールとしてのLangfuseの採⽤理由 4. 評価ドリブンなリリースサイクルの全体像 5.
オンライン評価プロセス 6. オフライン評価プロセス 7. 導⼊ステップ 8. 評価データセットの育てはじめ⽅ 9. まとめ
ペアーズにおけるLLMアプリケーション運⽤課題 • LLM APIを活⽤したアプリケーションの運⽤では、以下のような課題が顕著 ◦ 出⼒の評価が難しい ◦ 従来のMLOps⼿法がそのままでは通じない ◦ モデル∕プロンプトの出⼒精度低下(デグレ)の検知の重要性
• 弊社ではLLMアプリケーションを開発運⽤しているのがAI Teamだけでなく、 SRE∕Platform Teamも開発者の⽣産性向上のためのLLM活⽤を戦略の⼀部とし て実施しており、全社的に使えるこういった課題の解決を⽀援する基盤を必要と していた
ペアーズのLLMOps基盤のアーキテクチャ
LLMOpsツールとしてのLangfuseの採⽤理由 • LLMOpsに必要な機能を網羅 ◦ LangfuseはSelf-hostするパターンでも、ログ‧トレース管理、プロンプト マネジメント、評価データセット、実験管理、カスタムスコアによる評価 など、LLMOpsに必要な機能を網羅的に提供 • Self-hostしやすさ ◦
LLMOps系のSaaSソリューションは、⼤規模トラフィックのログ‧トレー スデータ量によるコストが課題で、弊社規模のtoCサービスだと採⽤が難し い ◦ LangfuseはOSSとして提供され、Self-hostすることが可能であり、しかも helm chartまで提供されているので、弊社のメインホスティング先である AWS EKSを⽤いて構築できることも⼤きかった
評価ドリブンなリリースサイクルの全体像
オンライン評価プロセス
オフライン評価プロセス ※LLMアプリケーション統合実験もほぼ同様のフロー
導⼊ステップ
評価データセットの育て始め⽅ • 1. 初期データセット作成 ◦ 10~20問程度からスタートでOK ◦ 例えばシンプルなRAGアプリケーションなどであれば、Ragasで⽣成したシ ングル/マルチホップの問答ケース や他LLMで⽣成したケースの採⽤も検討
◦ ユーザー、ドメインエキスパート評価付きオンラインログトレースがすで にある場合はそちらも使⽤ ▪ 正例/負例(検索不備、⽣成不備、プロンプト命令違反) • 2. オンラインログトレースから追加し継続的に育てていく ◦ 情報検索できていない、不完全回答などを洗い出してケース追加 ◦ このプロセスを通して、評価基準の⾔語化、プロンプト改善にもつなげる
まとめ • LLMアプリケーションの運⽤は従来のMLOpsの⼿法が通じず、かつ出⼒の評価が 難しいことなどが起因して、⾮常に難しい • 上記の課題を解決するために、Langfuseを中枢に据えたLLMOps基盤を⽤いて、 オンライン評価とオフライン評価でリリースを挟み込んだ評価ドリブンなリリー スサイクルを回していくのがおすすめ • 上記を実践するために
◦ まずはアプリケーションのログ‧トレースを保存 ◦ 次にプロンプトマネジメント導⼊と、評価データセット作りを10件から ◦ そこからプロンプト実験と、LLM-as-a-JudgeなどのLLM Evaluatorの仕組 みを、評価基準など不完全で良いので導⼊してみる ◦ これらをまずは実践することで、評価ドリブンなリリースライフサイクル が、評価データセットと評価基準を育てながら回せるようになる
We’re hiring! ペアーズではエンジニアを積極採⽤中! カジュアル⾯談もお待ちしております! (X: @fukubaka0825)
None