Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Matrix Multiplication
Search
Moro
November 14, 2018
Programming
0
8
Matrix Multiplication
Parallel Computing in Shared Memory using OpenMP - Matrix Multiplication problem.
Moro
November 14, 2018
Tweet
Share
More Decks by Moro
See All by Moro
MockK and Truth - Unit Tests - Android
gabrielbmoro
0
150
More Accessible Apps - Android
gabrielbmoro
0
9
Variables and Tips - Android
gabrielbmoro
0
10
Migrating an Existing App to Compose - Android
gabrielbmoro
0
12
Recycler View and Performance - Android
gabrielbmoro
0
12
Repository Pattern and Productivity - Android
gabrielbmoro
0
13
What is new in Android Jetpack?
gabrielbmoro
0
18
List Users - Android
gabrielbmoro
0
5
Working with Collections - Kotlin
gabrielbmoro
0
12
Other Decks in Programming
See All in Programming
2025 컴포즈 마법사
jisungbin
0
150
CloudflareのSandbox SDKを試してみた
syumai
0
180
Private APIの呼び出し方
kishikawakatsumi
3
900
Micro Frontendsで築いた 共通基盤と運用の試行錯誤 / Building a Shared Platform with Micro Frontends: Operational Learnings
kyntk
0
1.6k
DartASTとその活用
sotaatos
2
150
TVerのWeb内製化 - 開発スピードと品質を両立させるまでの道のり
techtver
PRO
3
1.2k
TypeScript 5.9 で使えるようになった import defer でパフォーマンス最適化を実現する
bicstone
1
470
r2-image-worker
yusukebe
1
180
最新のDirectX12で使えるレイトレ周りの機能追加について
projectasura
0
300
ソフトウェア設計の課題・原則・実践技法
masuda220
PRO
22
17k
Java_プロセスのメモリ監視の落とし穴_NMT_で見抜けない_glibc_キャッシュ問題_.pdf
ntt_dsol_java
0
230
Rails Girls Sapporo 2ndの裏側―準備の日々から見えた、私が得たもの / SAPPORO ENGINEER BASE #11
lemonade_37
2
190
Featured
See All Featured
Testing 201, or: Great Expectations
jmmastey
46
7.8k
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
Optimizing for Happiness
mojombo
379
70k
GraphQLとの向き合い方2022年版
quramy
49
14k
Faster Mobile Websites
deanohume
310
31k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
36
6.1k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
11
940
Music & Morning Musume
bryan
46
7k
Facilitating Awesome Meetings
lara
57
6.6k
Code Review Best Practice
trishagee
72
19k
Transcript
Matrix Multiplication Parallel Computing in Shared Memory using OpenMP Gabriel
Moro - KNOWLEDGE TRANSFER - KT, Porto Alegre - November 2018
Matrix Multiplication A B C
Matrix Multiplication A B C
Matrix Multiplication A B C
Matrix Multiplication A B C
Matrix Multiplication A B C
Matrix Multiplication A B C
Matrix Multiplication A B C
Matrix Multiplication A B C
Matrix Multiplication A B C
Ways to improve the performance to this algorithm - Algorithm
complexity - Parallelism
Ways to improve the performance to this algorithm - Algorithm
complexity - Parallelism
Ways to improve the performance to this algorithm - Algorithm
complexity - Parallelism - Shared Memory - Distributed Memory
Ways to improve the performance to this algorithm - Algorithm
complexity - Parallelism - Shared Memory - Distributed Memory
Parallel OpenMP Model A C T1 T2 T3
Parallel OpenMP Model A C T1 T2 T3
Turing - Processor - 4 x Intel Xeon X7550 Nehalem
- 32 physical cores - HyperThreading - Memory - 128GB DDR3 - GPPD-UFRGS
Version: normal_seq for(i=0;i < size; i++) { for(j=0;j < size;
j++) { tmp=0; for(k=0; k < size; k++) tmp = tmp + A[i][k] * B[k][j]; C[i][j] = tmp; } }
Version: normal_par #pragma omp parallel for private(i,j,k,tmp) for(i=0;i < size;
i++) { for(j=0;j < size; j++) { tmp=0; for(k=0; k < size; k++) tmp = tmp + A[i][k] * B[k][j]; C[i][j] = tmp; } }
Version: continuos_seq for(i=0;i < size; i++) { for(j=0;j < size;
j++) { tmp=0; for(k=0; k < size; k++) tmp = tmp + A[i * size + k] * B[k * size + j]; C[i * size + j] = tmp; } }
Version: continuos_par #pragma omp parallel for private(i,j,k,tmp) for(i=0;i < size;
i++) { for(j=0;j < size; j++) { tmp=0; for(k=0; k < size; k++) tmp = tmp + A[i * size + k] * B[k * size + j]; C[i * size + j] = tmp; } }
Version: tiling_seq register int jj,kk,i,j,k; double tmp=0; for(jj=0;jj < size;
jj=jj+block) { for(kk=0; kk < size; kk=kk+block) { for(i=0; i < size; i++) { for(j=jj; j < min(jj+block, size); j++) { tmp=0; for(k=kk; k < min(kk+block,size); k++) { tmp = tmp + A[i][k] * B[k][j]; } R[i][j] = tmp; } } } }
Version: tiling_par register int jj,kk,i,j,k; double tmp=0; for(jj=0;jj < size;
jj=jj+block) { for(kk=0; kk < size; kk=kk+block) { #pragma omp parallel for private(i,j,k,tmp) schedule(static) for(i=0; i < size; i++) { for(j=jj; j < min(jj+block, size); j++) { tmp=0; for(k=kk; k < min(kk+block,size); k++) { tmp = tmp + A[i][k] * B[k][j]; } R[i][j] = tmp; } } } }
Links - Top 500: https://www.top500.org/lists/2018/11/ - Green 500: https://www.top500.org/green500/lists/2018/11/ -
NAS Parallel Benchmark: https://www.nas.nasa.gov/publications/npb.html
Thanks! https://github.com/tido4410/knowledge-transfer-gbmoro.git Gabriel Moro - Matrix Multiplication - OpenMP -
KT, Porto Alegre - November 2018