Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
都市をデータで見るってこういうこと PLATEAU属性情報入門
Search
nokonoko1203
June 24, 2025
Programming
1
670
都市をデータで見るってこういうこと PLATEAU属性情報入門
nokonoko1203
June 24, 2025
Tweet
Share
More Decks by nokonoko1203
See All by nokonoko1203
EMがLLMで仕様書駆動開発したらすごい捗った
nokonoko1203
1
40
日本全国・都市3D化プロジェクト「PLATEAU」とデータ変換OSS「PLATEAU GIS Converter」の公開
nokonoko1203
4
5.5k
Hono・Prisma・AWSでGeoなAPI開発
nokonoko1203
5
1.1k
日本全国の都市3D化プロジェクト「PLATEAU」の紹介
nokonoko1203
0
130
PLATEAU Hands-on 11 PLATEAUデータの高さや位置合わせについて理解する
nokonoko1203
0
570
20240626_PLATEAU_AWARD説明会
nokonoko1203
0
400
Rustで「プリズモイダル法」を利用して「土量計算」をガチでやる
nokonoko1203
1
800
RustでGISなOSS
nokonoko1203
1
700
20230705_PLATEAU_AWARD説明会
nokonoko1203
0
600
Other Decks in Programming
See All in Programming
バイブコーディング超えてバイブデプロイ〜CloudflareMCPで実現する、未来のアプリケーションデリバリー〜
azukiazusa1
3
770
顧客の画像データをテラバイト単位で配信する 画像サーバを WebP にした際に起こった課題と その対応策 ~継続的な取り組みを添えて~
takutakahashi
4
1.4k
階層化自動テストで開発に機動力を
ickx
1
460
テスターからテストエンジニアへ ~新米テストエンジニアが歩んだ9ヶ月振り返り~
non0113
2
250
バイブコーディングの正体——AIエージェントはソフトウェア開発を変えるか?
stakaya
5
590
可変性を制する設計: 構造と振る舞いから考える概念モデリングとその実装
a_suenami
10
1.4k
AI Ramen Fight
yusukebe
0
120
#QiitaBash TDDで(自分の)開発がどう変わったか
ryosukedtomita
1
340
React は次の10年を生き残れるか:3つのトレンドから考える
oukayuka
41
16k
decksh - a little language for decks
ajstarks
4
21k
JetBrainsのAI機能の紹介 #jjug
yusuke
0
160
MCP連携で加速するAI駆動開発/mcp integration accelerates ai-driven-development
bpstudy
0
240
Featured
See All Featured
BBQ
matthewcrist
89
9.8k
A Tale of Four Properties
chriscoyier
160
23k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
126
53k
Building Applications with DynamoDB
mza
95
6.5k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
34
5.9k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
35
2.5k
Product Roadmaps are Hard
iamctodd
PRO
54
11k
Gamification - CAS2011
davidbonilla
81
5.4k
It's Worth the Effort
3n
185
28k
[RailsConf 2023] Rails as a piece of cake
palkan
56
5.7k
Reflections from 52 weeks, 52 projects
jeffersonlam
351
21k
Done Done
chrislema
185
16k
Transcript
都市を”データで見る”って こういうこと PLATEAU属性情報入門 株式会社MIERUNE 西尾 悟(@nokonoko_1203)
西尾 悟(@nokonoko_1203) 2児の父をやりながら株式会社MIERUNEで GIS(地理空間情報)とWeb開発を行う、 Engineering Managerです! Python / Rust /
GIS / 点群 / 3D Tiles / AWS / WebGL / PLATEAU ADVOCATE / Cesium Certified Developer
None
PLATEAU ADVOCATEとして、PLATEAUの社会実装に貢献
Cesiumに関連する優れた開発スキルを証明し、Cesium Certified Developerに認定
Interface 2025年5月号への寄稿
None
PLATEAUデータは綺麗でカッコいい https://www.mlit.go.jp/plateau/file/libraries/doc/plateau_doc_0000_ver05.pdf
でもカッコいいだけじゃない! https://plateauview.mlit.go.jp/
ただの3Dデータではなく、現実世界の情報を反映させた「地理空間情報」 https://plateauview.mlit.go.jp/
PLATEAUデータの有用性
3D都市モデルを活用した延焼シミュレーターの高度化事業 ・シミュレーションの高度化: PLATEAUの地形(標高)や建物の高さ・構造種別・建築年と いった詳細な属性情報を活用し、従来の延焼シミュレーション の精度が向上した。 ・現実的な延焼予測の実現: 市街地と中山間地をシームレスにつなぎ、これまで困難だった 傾斜地なども考慮した、より現実的な延焼予測を可能になっ た。 ・具体的な検証と成果:
標高データや「地面」を模した地物の有無による影響を検証 し、傾斜地での延焼速度が変化することを確認するなど、より 現実に近い挙動を再現できることを実証された。 https://www.mlit.go.jp/plateau/use-case/uc23-26/
太陽光発電のポテンシャル推計及び反射シミュレーション v3.0 ・発電ポテンシャル推計・適地判定 月毎の日照時間や屋根面積・1パネルあたりの発電量などをイン プットとして閾値によって色分けする機能や、災害リスク・景 観保全区域・建築構造・洪水浸水深・大切加重などの情報をイ ンプットとしてリスク度合いを建物ごとに付与する機能が実装 された。 ・ポテンシャル推計の精度検証: NEDOの日射量データベースや実際の発電量との比較検証が実
施された。その結果、推計値は実測値と近似しており、行政の 施策検討に利用できる精度が実証された。 ・実用性と新たな活用可能性: 自治体職員による試用で、住民説明などの合意形成に有用であ ることが確認された。さらに、災害時の非常用電源の配置検討 にも有効であるなど、当初の想定を超えた活用可能性が示され た。 https://www.mlit.go.jp/plateau/use-case/uc24-15/
ユースケースは大量にある https://www.mlit.go.jp/plateau/use-case/
PLATEAU VIEWで属性情報に詳しくなる https://plateauview.mlit.go.jp/
都市の情報に詳しくなる https://plateauview.mlit.go.jp/
ダウンロードはとても簡単 https://plateauview.mlit.go.jp/
指定した箇所のデータのみが取得できる
今回のメインはこのファイルの話
地域メッシュ(1次メッシュ) https://mesh-jp.mierune.dev/
地域メッシュ(3次メッシュ・メッシュコード: 53394611) https://mesh-jp.mierune.dev/?code=53394611
53394611_bldg_6697_op.gml?なんだか難しそう…しかも2,765,000行…
None
よくみるとそんなに難しくない!(めんどくさいだけ) https://www.mlit.go.jp/plateaudocument01-04/
データの意味は全て「標準製品仕様書」に書いている https://www.mlit.go.jp/plateaudocument
だんだん読めるようになってくる…はず… ・データ作成日:2024-03-15 ・延べ面積換算係数:1.00 ・都市計画の地区名:日本橋・東京駅前地区 ・建築物の種類を表すコード:3001 ・建築物の用途を表すコード:413 ・計測された建物の高さ:8m ・地上の階数:2階 ・地下の階数:0階 ・緯度、経度、高さの座標:
35.68238801376454 139.77169191520449 0 ...
が、読む必要はない(PLATEAU GIS Converter) https://github.com/MIERUNE/plateau-gis-converter
チュートリアルもある https://www.mlit.go.jp/plateau/learning/tpc30/ https://www.mlit.go.jp/plateau/learning/tpc31/
QGISで属性を見る・仕様書と見比べる
どれを選べば良い?
とりあえず「NoGeometry」ではないやつでOK! 建物本体 河川災害のリスク情報
PLATEAUデータは入れ子構造 id: bldg_b5b4d7d4-a078-4ca9-8ec3-87e5bdc63cde 名称: "グラントウキョウ ノースタワー" ・「隅田川・新河岸川流域」の災害リスクは「0.5m未満」 ・「神田川流域」での災害リスクも「0.5m未満」 「建物情報」 id
建物名 利用区分 面積 ... 「河川Aでの災害リスク」 建物id 浸水深 浸水ランク 規模 ... 「河川Bでの災害リスク」 建物id 浸水深 浸水ランク 規模 ...
ただ、表形式では表現できない
建物IDで「関連付け」を行う 「建物情報」 id 建物名 利用区分 面積 ... 「河川Aでの災害リスク」 建物id 浸水深
浸水ランク 規模 ... 「河川Bでの災害リスク」 建物id 浸水深 浸水ランク 規模 ...
「LOD」が高いと複雑 「窓・屋根・扉・煙突…」ごとの「名称・材質・形状…」など…
「建物」の「属性」 https://www.mlit.go.jp/plateaudocument/toc4/toc4_02/toc4_02_03/toc4_02_03_01/_bldgbuilding/
「コードリスト」 https://www.mlit.go.jp/plateaudocument/toc4/toc4_02/toc4_02_04/toc4_02_04_01/_building_usage_xml/
PLATEAU GIS Converterでは「コードリスト」は自動で日本語に変換される
「属性情報」で困ったら「標準製品仕様書」を調べて、「QGIS」で見てみよう!
都市をデータで見ていこう!