Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Scaling Up Hibernate/JPA Applications with Infi...
Search
Galder Zamarreño
April 20, 2013
Technology
0
210
Scaling Up Hibernate/JPA Applications with Infinispan Second-Level Cache
Galder Zamarreño
April 20, 2013
Tweet
Share
More Decks by Galder Zamarreño
See All by Galder Zamarreño
Principles and Patterns for Streaming Data Analysis
galderz
0
100
Streaming Data Analysis with Kubernetes
galderz
0
2.5k
The Rough Guide to Java RPC Frameworks
galderz
1
7k
Streaming Data Analysis with Kubernetes
galderz
1
420
Streaming Data Workshop @ Codemotion Madrid
galderz
0
1.4k
Streaming Data : ni pierdas el tren, ni esperes en balde
galderz
0
3k
Data grids : descubre qué esconden los datos
galderz
0
3.1k
Streaming Data Workhop @ Devoxx
galderz
0
370
Streaming Data Analysis with Kubernetes
galderz
0
2.1k
Other Decks in Technology
See All in Technology
Agent Skillsがハーネスの垣根を超える日
gotalab555
5
3.1k
MLflowダイエット大作戦
lycorptech_jp
PRO
1
160
Kiro を用いたペアプロのススメ
taikis
4
1.4k
AgentCoreとStrandsで社内d払いナレッジボットを作った話
motojimayu
1
610
M&Aで拡大し続けるGENDAのデータ活用を促すためのDatabricks権限管理 / AEON TECH HUB #22
genda
0
190
re:Invent2025 3つの Frontier Agents を紹介 / introducing-3-frontier-agents
tomoki10
0
350
アプリにAIを正しく組み込むための アーキテクチャ── 国産LLMの現実と実践
kohju
0
170
20251219 OpenIDファウンデーション・ジャパン紹介 / OpenID Foundation Japan Intro
oidfj
0
390
通勤手当申請チェックエージェント開発のリアル
whisaiyo
3
340
S3を正しく理解するための内部構造の読解
nrinetcom
PRO
3
240
Oracle Database@Azure:サービス概要のご紹介
oracle4engineer
PRO
2
170
子育てで想像してなかった「見えないダメージ」 / Unforeseen "hidden burdens" of raising children.
pauli
2
310
Featured
See All Featured
Visual Storytelling: How to be a Superhuman Communicator
reverentgeek
2
390
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
The Cult of Friendly URLs
andyhume
79
6.7k
Building a A Zero-Code AI SEO Workflow
portentint
PRO
0
190
Prompt Engineering for Job Search
mfonobong
0
120
Reality Check: Gamification 10 Years Later
codingconduct
0
1.9k
Agile that works and the tools we love
rasmusluckow
331
21k
GitHub's CSS Performance
jonrohan
1032
470k
Un-Boring Meetings
codingconduct
0
160
Public Speaking Without Barfing On Your Shoes - THAT 2023
reverentgeek
1
280
Technical Leadership for Architectural Decision Making
baasie
0
180
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
122
21k
Transcript
None
Scaling Up Hibernate/JPA Applications with Infinispan Second-Level Cache ! Galder
Zamarreño Senior Software Engineer Red Hat, Inc ! 20th April 2013, São Paulo
Galder Zamarreño • R&D Engineer, Red Hat Inc. • Infinispan
developer • Creator of Infinispan second-level cache provider for Hibernate • Escalante founder and lead • Twitter: @galderz
Agenda • Bottlenecks in Hibernate/JPA applications • Applying caching techniques
sensibly • Distribute caches across multiple nodes • Caching in managed environments
Why do we care?
DB = bottleneck Most Hibernate/JPA applications involve intensive I/O workload
against database
Bottleneck problems Bottlenecks decrease throughput, increase latency... and make users
:(((
We care because we want to make users :))
How do we scale up Hibernate/JPA applications ?
Option 1: $$$ Buy/rent more powerful hardware to host the
DB... who can afford that?
Option 2: Caching Use second-level caching sensibly to reduce burden
on database
Second Level Cache JVM-level, or clustered, cache whose contents can
be shared between different transactions
Lesson 1: Don't apply caching blindly! Always measure first!
Caching cost! Local caches have a cost (memory, GC), clustered
caches add more cost (network, IO)
Demo 1: Measure performance
Lesson 2: Think what you are going to cache!
Think about reads Biggest performance gain comes from caching read-
mostly data
What kind of data? Entities, collections of entities, and query
results can be cached
Entity caching Mark entities cacheable, and define the cache concurrency
strategy
Query caching Speed up execution of repeated queries (w/ same
parameters) by caching their results
Query results validity Cached query results are valid as long
as none of the entity types involved are updated
Demo 2: Query cache in action
Lesson 3: How to select a caching provider
Cache Strategies • Read-only • data never updated • insert/delete
allowed • Read/write • data can be updated • with JBDC transactions or no transactions
Cache Strategies • Nonstrict read/write • data rarely updated •
with JBDC transactions or no transactions • Transactional • data can be updated • for JTA environments
Strategy Support Provider / Strategy read- only nonstrict r/w r/w
transactional Infinispan yes no no yes EhCache yes yes yes yes ConcurretHashMap (testing) yes yes yes no
Lesson 4: Scale up your Hibernate/JPA app going multi-node!
Caches form cluster Infinispan uses JGroups to form a peer-to-peer
cluster, providing discovery, failure detection...etc
Clustered Entities Recommended using invalidation to keep entities consistent accross
cluster (replication can be used too)
Queries / Timestamps Recommended keeping query cache local to each
node, but must replicate update timestamps cache
Demo 3: Clustered second-level cache in action!
Lesson 5: Scaling up JPA in managed environments
JPA Caching simplified Infinispan as default cache provider (with sensible
defaults), and ready to cluster!
shared-cache-mode Persistence unit configuration option that should be set to
ENABLE_SELECTIVE
Demo 4: JPA caching in JBoss AS 7
Summary Q - How do we scale up Hibernate/JPA applications?
Enable second level cache!!
Summary • Don't apply caching blindly! Always measure first! •
Think what you are going to cache! • How to select a caching provider • Scale up your app going multi-node! • Scaling up JPA in managed environments
Questions • http://infinispan.org • http://hibernate.org • http://github.com/galderz/secondlc • https://docs.jboss.org/author/display/ ISPN/Using+Infinispan+as+JPA-Hibernate
+Second+Level+Cache+Provider