Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Scaling Up Hibernate/JPA Applications with Infi...
Search
Sponsored
·
SiteGround - Reliable hosting with speed, security, and support you can count on.
→
Galder Zamarreño
April 20, 2013
Technology
0
210
Scaling Up Hibernate/JPA Applications with Infinispan Second-Level Cache
Galder Zamarreño
April 20, 2013
Tweet
Share
More Decks by Galder Zamarreño
See All by Galder Zamarreño
Principles and Patterns for Streaming Data Analysis
galderz
0
110
Streaming Data Analysis with Kubernetes
galderz
0
2.5k
The Rough Guide to Java RPC Frameworks
galderz
1
7.1k
Streaming Data Analysis with Kubernetes
galderz
1
420
Streaming Data Workshop @ Codemotion Madrid
galderz
0
1.4k
Streaming Data : ni pierdas el tren, ni esperes en balde
galderz
0
3k
Data grids : descubre qué esconden los datos
galderz
0
3.1k
Streaming Data Workhop @ Devoxx
galderz
0
370
Streaming Data Analysis with Kubernetes
galderz
0
2.1k
Other Decks in Technology
See All in Technology
こんなところでも(地味に)活躍するImage Modeさんを知ってるかい?- Image Mode for OpenShift -
tsukaman
0
160
データの整合性を保ちたいだけなんだ
shoheimitani
8
3.2k
StrandsとNeptuneを使ってナレッジグラフを構築する
yakumo
1
120
usermode linux without MMU - fosdem2026 kernel devroom
thehajime
0
240
Kiro IDEのドキュメントを全部読んだので地味だけどちょっと嬉しい機能を紹介する
khmoryz
0
200
コスト削減から「セキュリティと利便性」を担うプラットフォームへ
sansantech
PRO
3
1.5k
Digitization部 紹介資料
sansan33
PRO
1
6.8k
OCI Database Management サービス詳細
oracle4engineer
PRO
1
7.4k
クレジットカード決済基盤を支えるSRE - 厳格な監査とSRE運用の両立 (SRE Kaigi 2026)
capytan
6
2.8k
Frontier Agents (Kiro autonomous agent / AWS Security Agent / AWS DevOps Agent) の紹介
msysh
3
180
インフラエンジニア必見!Kubernetesを用いたクラウドネイティブ設計ポイント大全
daitak
1
370
Greatest Disaster Hits in Web Performance
guaca
0
270
Featured
See All Featured
Paper Plane (Part 1)
katiecoart
PRO
0
4.3k
The Limits of Empathy - UXLibs8
cassininazir
1
220
B2B Lead Gen: Tactics, Traps & Triumph
marketingsoph
0
55
4 Signs Your Business is Dying
shpigford
187
22k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.2k
Design in an AI World
tapps
0
140
Jamie Indigo - Trashchat’s Guide to Black Boxes: Technical SEO Tactics for LLMs
techseoconnect
PRO
0
62
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
Stop Working from a Prison Cell
hatefulcrawdad
273
21k
A Soul's Torment
seathinner
5
2.3k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.6k
WENDY [Excerpt]
tessaabrams
9
36k
Transcript
None
Scaling Up Hibernate/JPA Applications with Infinispan Second-Level Cache ! Galder
Zamarreño Senior Software Engineer Red Hat, Inc ! 20th April 2013, São Paulo
Galder Zamarreño • R&D Engineer, Red Hat Inc. • Infinispan
developer • Creator of Infinispan second-level cache provider for Hibernate • Escalante founder and lead • Twitter: @galderz
Agenda • Bottlenecks in Hibernate/JPA applications • Applying caching techniques
sensibly • Distribute caches across multiple nodes • Caching in managed environments
Why do we care?
DB = bottleneck Most Hibernate/JPA applications involve intensive I/O workload
against database
Bottleneck problems Bottlenecks decrease throughput, increase latency... and make users
:(((
We care because we want to make users :))
How do we scale up Hibernate/JPA applications ?
Option 1: $$$ Buy/rent more powerful hardware to host the
DB... who can afford that?
Option 2: Caching Use second-level caching sensibly to reduce burden
on database
Second Level Cache JVM-level, or clustered, cache whose contents can
be shared between different transactions
Lesson 1: Don't apply caching blindly! Always measure first!
Caching cost! Local caches have a cost (memory, GC), clustered
caches add more cost (network, IO)
Demo 1: Measure performance
Lesson 2: Think what you are going to cache!
Think about reads Biggest performance gain comes from caching read-
mostly data
What kind of data? Entities, collections of entities, and query
results can be cached
Entity caching Mark entities cacheable, and define the cache concurrency
strategy
Query caching Speed up execution of repeated queries (w/ same
parameters) by caching their results
Query results validity Cached query results are valid as long
as none of the entity types involved are updated
Demo 2: Query cache in action
Lesson 3: How to select a caching provider
Cache Strategies • Read-only • data never updated • insert/delete
allowed • Read/write • data can be updated • with JBDC transactions or no transactions
Cache Strategies • Nonstrict read/write • data rarely updated •
with JBDC transactions or no transactions • Transactional • data can be updated • for JTA environments
Strategy Support Provider / Strategy read- only nonstrict r/w r/w
transactional Infinispan yes no no yes EhCache yes yes yes yes ConcurretHashMap (testing) yes yes yes no
Lesson 4: Scale up your Hibernate/JPA app going multi-node!
Caches form cluster Infinispan uses JGroups to form a peer-to-peer
cluster, providing discovery, failure detection...etc
Clustered Entities Recommended using invalidation to keep entities consistent accross
cluster (replication can be used too)
Queries / Timestamps Recommended keeping query cache local to each
node, but must replicate update timestamps cache
Demo 3: Clustered second-level cache in action!
Lesson 5: Scaling up JPA in managed environments
JPA Caching simplified Infinispan as default cache provider (with sensible
defaults), and ready to cluster!
shared-cache-mode Persistence unit configuration option that should be set to
ENABLE_SELECTIVE
Demo 4: JPA caching in JBoss AS 7
Summary Q - How do we scale up Hibernate/JPA applications?
Enable second level cache!!
Summary • Don't apply caching blindly! Always measure first! •
Think what you are going to cache! • How to select a caching provider • Scale up your app going multi-node! • Scaling up JPA in managed environments
Questions • http://infinispan.org • http://hibernate.org • http://github.com/galderz/secondlc • https://docs.jboss.org/author/display/ ISPN/Using+Infinispan+as+JPA-Hibernate
+Second+Level+Cache+Provider