Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Scaling Up Hibernate/JPA Applications with Infi...
Search
Galder Zamarreño
April 20, 2013
Technology
0
210
Scaling Up Hibernate/JPA Applications with Infinispan Second-Level Cache
Galder Zamarreño
April 20, 2013
Tweet
Share
More Decks by Galder Zamarreño
See All by Galder Zamarreño
Principles and Patterns for Streaming Data Analysis
galderz
0
110
Streaming Data Analysis with Kubernetes
galderz
0
2.5k
The Rough Guide to Java RPC Frameworks
galderz
1
7.1k
Streaming Data Analysis with Kubernetes
galderz
1
420
Streaming Data Workshop @ Codemotion Madrid
galderz
0
1.4k
Streaming Data : ni pierdas el tren, ni esperes en balde
galderz
0
3k
Data grids : descubre qué esconden los datos
galderz
0
3.1k
Streaming Data Workhop @ Devoxx
galderz
0
370
Streaming Data Analysis with Kubernetes
galderz
0
2.1k
Other Decks in Technology
See All in Technology
学生・新卒・ジュニアから目指すSRE
hiroyaonoe
2
640
We Built for Predictability; The Workloads Didn’t Care
stahnma
0
140
Webhook best practices for rock solid and resilient deployments
glaforge
2
300
Bedrock PolicyでAmazon Bedrock Guardrails利用を強制してみた
yuu551
0
240
Tebiki Engineering Team Deck
tebiki
0
24k
SRE Enabling戦記 - 急成長する組織にSREを浸透させる戦いの歴史
markie1009
0
130
【Ubie】AIを活用した広告アセット「爆速」生成事例 | AI_Ops_Community_Vol.2
yoshiki_0316
1
110
~Everything as Codeを諦めない~ 後からCDK
mu7889yoon
3
430
Introduction to Sansan for Engineers / エンジニア向け会社紹介
sansan33
PRO
6
68k
SREが向き合う大規模リアーキテクチャ 〜信頼性とアジリティの両立〜
zepprix
0
460
レガシー共有バッチ基盤への挑戦 - SREドリブンなリアーキテクチャリングの取り組み
tatsukoni
0
220
【Oracle Cloud ウェビナー】[Oracle AI Database + AWS] Oracle Database@AWSで広がるクラウドの新たな選択肢とAI時代のデータ戦略
oracle4engineer
PRO
2
170
Featured
See All Featured
Automating Front-end Workflow
addyosmani
1371
200k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
32
2.8k
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.4k
Jamie Indigo - Trashchat’s Guide to Black Boxes: Technical SEO Tactics for LLMs
techseoconnect
PRO
0
62
The SEO identity crisis: Don't let AI make you average
varn
0
290
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
196
71k
What Being in a Rock Band Can Teach Us About Real World SEO
427marketing
0
170
Taking LLMs out of the black box: A practical guide to human-in-the-loop distillation
inesmontani
PRO
3
2k
Docker and Python
trallard
47
3.7k
How to Grow Your eCommerce with AI & Automation
katarinadahlin
PRO
1
110
Un-Boring Meetings
codingconduct
0
200
Navigating Algorithm Shifts & AI Overviews - #SMXNext
aleyda
0
1.1k
Transcript
None
Scaling Up Hibernate/JPA Applications with Infinispan Second-Level Cache ! Galder
Zamarreño Senior Software Engineer Red Hat, Inc ! 20th April 2013, São Paulo
Galder Zamarreño • R&D Engineer, Red Hat Inc. • Infinispan
developer • Creator of Infinispan second-level cache provider for Hibernate • Escalante founder and lead • Twitter: @galderz
Agenda • Bottlenecks in Hibernate/JPA applications • Applying caching techniques
sensibly • Distribute caches across multiple nodes • Caching in managed environments
Why do we care?
DB = bottleneck Most Hibernate/JPA applications involve intensive I/O workload
against database
Bottleneck problems Bottlenecks decrease throughput, increase latency... and make users
:(((
We care because we want to make users :))
How do we scale up Hibernate/JPA applications ?
Option 1: $$$ Buy/rent more powerful hardware to host the
DB... who can afford that?
Option 2: Caching Use second-level caching sensibly to reduce burden
on database
Second Level Cache JVM-level, or clustered, cache whose contents can
be shared between different transactions
Lesson 1: Don't apply caching blindly! Always measure first!
Caching cost! Local caches have a cost (memory, GC), clustered
caches add more cost (network, IO)
Demo 1: Measure performance
Lesson 2: Think what you are going to cache!
Think about reads Biggest performance gain comes from caching read-
mostly data
What kind of data? Entities, collections of entities, and query
results can be cached
Entity caching Mark entities cacheable, and define the cache concurrency
strategy
Query caching Speed up execution of repeated queries (w/ same
parameters) by caching their results
Query results validity Cached query results are valid as long
as none of the entity types involved are updated
Demo 2: Query cache in action
Lesson 3: How to select a caching provider
Cache Strategies • Read-only • data never updated • insert/delete
allowed • Read/write • data can be updated • with JBDC transactions or no transactions
Cache Strategies • Nonstrict read/write • data rarely updated •
with JBDC transactions or no transactions • Transactional • data can be updated • for JTA environments
Strategy Support Provider / Strategy read- only nonstrict r/w r/w
transactional Infinispan yes no no yes EhCache yes yes yes yes ConcurretHashMap (testing) yes yes yes no
Lesson 4: Scale up your Hibernate/JPA app going multi-node!
Caches form cluster Infinispan uses JGroups to form a peer-to-peer
cluster, providing discovery, failure detection...etc
Clustered Entities Recommended using invalidation to keep entities consistent accross
cluster (replication can be used too)
Queries / Timestamps Recommended keeping query cache local to each
node, but must replicate update timestamps cache
Demo 3: Clustered second-level cache in action!
Lesson 5: Scaling up JPA in managed environments
JPA Caching simplified Infinispan as default cache provider (with sensible
defaults), and ready to cluster!
shared-cache-mode Persistence unit configuration option that should be set to
ENABLE_SELECTIVE
Demo 4: JPA caching in JBoss AS 7
Summary Q - How do we scale up Hibernate/JPA applications?
Enable second level cache!!
Summary • Don't apply caching blindly! Always measure first! •
Think what you are going to cache! • How to select a caching provider • Scale up your app going multi-node! • Scaling up JPA in managed environments
Questions • http://infinispan.org • http://hibernate.org • http://github.com/galderz/secondlc • https://docs.jboss.org/author/display/ ISPN/Using+Infinispan+as+JPA-Hibernate
+Second+Level+Cache+Provider