Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Scaling Up Hibernate/JPA Applications with Infi...
Search
Galder Zamarreño
April 20, 2013
Technology
0
210
Scaling Up Hibernate/JPA Applications with Infinispan Second-Level Cache
Galder Zamarreño
April 20, 2013
Tweet
Share
More Decks by Galder Zamarreño
See All by Galder Zamarreño
Principles and Patterns for Streaming Data Analysis
galderz
0
94
Streaming Data Analysis with Kubernetes
galderz
0
2.4k
The Rough Guide to Java RPC Frameworks
galderz
1
7k
Streaming Data Analysis with Kubernetes
galderz
1
400
Streaming Data Workshop @ Codemotion Madrid
galderz
0
1.4k
Streaming Data : ni pierdas el tren, ni esperes en balde
galderz
0
3k
Data grids : descubre qué esconden los datos
galderz
0
3k
Streaming Data Workhop @ Devoxx
galderz
0
350
Streaming Data Analysis with Kubernetes
galderz
0
2k
Other Decks in Technology
See All in Technology
asken AI勉強会(Android)
tadashi_sato
0
150
Should Our Project Join the CNCF? (Japanese Recap)
whywaita
PRO
0
300
Model Mondays S2E03: SLMs & Reasoning
nitya
0
240
React開発にStorybookとCopilotを導入して、爆速でUIを編集・確認する方法
yu_kod
1
110
WordPressから ヘッドレスCMSへ! Storyblokへの移行プロセス
nyata
0
350
生成AI時代 文字コードを学ぶ意義を見出せるか?
hrsued
1
750
本が全く読めなかった過去の自分へ
genshun9
0
730
なぜ私はいま、ここにいるのか? #もがく中堅デザイナー #プロダクトデザイナー
bengo4com
0
1.3k
KubeCon + CloudNativeCon Japan 2025 Recap
ren510dev
1
320
生成AI時代の開発組織・技術・プロセス 〜 ログラスの挑戦と考察 〜
itohiro73
1
390
AWS テクニカルサポートとエンドカスタマーの中間地点から見えるより良いサポートの活用方法
kazzpapa3
3
620
Oracle Cloud Infrastructure:2025年6月度サービス・アップデート
oracle4engineer
PRO
2
310
Featured
See All Featured
Embracing the Ebb and Flow
colly
86
4.7k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Producing Creativity
orderedlist
PRO
346
40k
Testing 201, or: Great Expectations
jmmastey
42
7.6k
Music & Morning Musume
bryan
46
6.6k
Code Reviewing Like a Champion
maltzj
524
40k
StorybookのUI Testing Handbookを読んだ
zakiyama
30
5.9k
The Invisible Side of Design
smashingmag
300
51k
The Cost Of JavaScript in 2023
addyosmani
51
8.5k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
22k
GitHub's CSS Performance
jonrohan
1031
460k
Gamification - CAS2011
davidbonilla
81
5.3k
Transcript
None
Scaling Up Hibernate/JPA Applications with Infinispan Second-Level Cache ! Galder
Zamarreño Senior Software Engineer Red Hat, Inc ! 20th April 2013, São Paulo
Galder Zamarreño • R&D Engineer, Red Hat Inc. • Infinispan
developer • Creator of Infinispan second-level cache provider for Hibernate • Escalante founder and lead • Twitter: @galderz
Agenda • Bottlenecks in Hibernate/JPA applications • Applying caching techniques
sensibly • Distribute caches across multiple nodes • Caching in managed environments
Why do we care?
DB = bottleneck Most Hibernate/JPA applications involve intensive I/O workload
against database
Bottleneck problems Bottlenecks decrease throughput, increase latency... and make users
:(((
We care because we want to make users :))
How do we scale up Hibernate/JPA applications ?
Option 1: $$$ Buy/rent more powerful hardware to host the
DB... who can afford that?
Option 2: Caching Use second-level caching sensibly to reduce burden
on database
Second Level Cache JVM-level, or clustered, cache whose contents can
be shared between different transactions
Lesson 1: Don't apply caching blindly! Always measure first!
Caching cost! Local caches have a cost (memory, GC), clustered
caches add more cost (network, IO)
Demo 1: Measure performance
Lesson 2: Think what you are going to cache!
Think about reads Biggest performance gain comes from caching read-
mostly data
What kind of data? Entities, collections of entities, and query
results can be cached
Entity caching Mark entities cacheable, and define the cache concurrency
strategy
Query caching Speed up execution of repeated queries (w/ same
parameters) by caching their results
Query results validity Cached query results are valid as long
as none of the entity types involved are updated
Demo 2: Query cache in action
Lesson 3: How to select a caching provider
Cache Strategies • Read-only • data never updated • insert/delete
allowed • Read/write • data can be updated • with JBDC transactions or no transactions
Cache Strategies • Nonstrict read/write • data rarely updated •
with JBDC transactions or no transactions • Transactional • data can be updated • for JTA environments
Strategy Support Provider / Strategy read- only nonstrict r/w r/w
transactional Infinispan yes no no yes EhCache yes yes yes yes ConcurretHashMap (testing) yes yes yes no
Lesson 4: Scale up your Hibernate/JPA app going multi-node!
Caches form cluster Infinispan uses JGroups to form a peer-to-peer
cluster, providing discovery, failure detection...etc
Clustered Entities Recommended using invalidation to keep entities consistent accross
cluster (replication can be used too)
Queries / Timestamps Recommended keeping query cache local to each
node, but must replicate update timestamps cache
Demo 3: Clustered second-level cache in action!
Lesson 5: Scaling up JPA in managed environments
JPA Caching simplified Infinispan as default cache provider (with sensible
defaults), and ready to cluster!
shared-cache-mode Persistence unit configuration option that should be set to
ENABLE_SELECTIVE
Demo 4: JPA caching in JBoss AS 7
Summary Q - How do we scale up Hibernate/JPA applications?
Enable second level cache!!
Summary • Don't apply caching blindly! Always measure first! •
Think what you are going to cache! • How to select a caching provider • Scale up your app going multi-node! • Scaling up JPA in managed environments
Questions • http://infinispan.org • http://hibernate.org • http://github.com/galderz/secondlc • https://docs.jboss.org/author/display/ ISPN/Using+Infinispan+as+JPA-Hibernate
+Second+Level+Cache+Provider