Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
スマートファクトリーの第一歩 〜AWSマネージドサービスで 実現する予知保全と生成AI活用まで
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
wanda
September 08, 2025
Technology
2
530
スマートファクトリーの第一歩 〜AWSマネージドサービスで 実現する予知保全と生成AI活用まで
AWS IoT SiteWiseを中心に、マネージドサービスで始める予知保全の実践と、生成AIを利用した構成パターンの紹介を通して、スマートファクトリー実現の第一歩を解説します。
wanda
September 08, 2025
Tweet
Share
More Decks by wanda
See All by wanda
スマートファクトリーの第一歩 AWSマネージドサービスで実現する予知保全と生成AI活用まで
ganota
0
280
AWS IoT Greengrass V2で始める デバイスアプリケーションの継続的開発
ganota
0
1.5k
試して分かった!AWS を使った PLCのデータ収集と分析基盤の実践ノウハウ #FA設備技術勉強会#13
ganota
2
16k
AWS IoT SiteWise 導入時に検討するべき3つのポイント
ganota
0
5.9k
SORACOM LTE-M Button Plusと100均ショップの商品でIoTポストを作ってみた
ganota
0
1.7k
Dome9で始めるAWSセキュリティリスク管理.pdf
ganota
0
4.2k
Developers.IO_Nagoya_Well-Architected_Frameworkでクラウドジャーニー.pdf
ganota
0
1.1k
Other Decks in Technology
See All in Technology
フルカイテン株式会社 エンジニア向け採用資料
fullkaiten
0
10k
顧客との商談議事録をみんなで読んで顧客解像度を上げよう
shibayu36
0
340
量子クラウドサービスの裏側 〜Deep Dive into OQTOPUS〜
oqtopus
0
150
20260208_第66回 コンピュータビジョン勉強会
keiichiito1978
0
200
~Everything as Codeを諦めない~ 後からCDK
mu7889yoon
3
530
AWS Network Firewall Proxyを触ってみた
nagisa53
1
250
Codex 5.3 と Opus 4.6 にコーポレートサイトを作らせてみた / Codex 5.3 vs Opus 4.6
ama_ch
0
220
猫でもわかるKiro CLI(セキュリティ編)
kentapapa
0
130
Cloud Runでコロプラが挑む 生成AI×ゲーム『神魔狩りのツクヨミ』の裏側
colopl
0
150
SRE Enabling戦記 - 急成長する組織にSREを浸透させる戦いの歴史
markie1009
0
170
プロポーザルに込める段取り八分
shoheimitani
1
670
StrandsとNeptuneを使ってナレッジグラフを構築する
yakumo
1
130
Featured
See All Featured
Context Engineering - Making Every Token Count
addyosmani
9
670
Leading Effective Engineering Teams in the AI Era
addyosmani
9
1.6k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
196
71k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
How to Talk to Developers About Accessibility
jct
2
140
The Pragmatic Product Professional
lauravandoore
37
7.1k
Between Models and Reality
mayunak
1
200
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.9k
Leadership Guide Workshop - DevTernity 2021
reverentgeek
1
200
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
Building AI with AI
inesmontani
PRO
1
710
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
38
2.7k
Transcript
スマートファクトリーの第⼀歩 〜 AWSマネージドサービスで 実現する予知保全と⽣成AI活⽤まで 市⽥ 善久 クラウド事業本部 コンサルティング部 IoT ソリューションアーキテクト
⾃⼰紹介
市⽥善久 3 • クラウド事業本部 コンサルティング部 ◦ IoT ソリューションアーキテクト ◦ モダンアプリケーション
コンサルティング チーム マネージャー(兼務) • ⼤阪オフィス所属 • AWS IoT Greengrass が好き
本セッションのアジェンダ
本セッションでお話すること 5 • ⼯場データ活⽤の課題 • AWS IoT SiteWise と新機能の紹介 •
AIを利⽤した予知保全のパターン事例 話さないこと • Amazon Bedrockのこと ◦ ⽣成AIの花形サービスですが今回は話しません。
⼯場データ活⽤への技術的な課題
⼯場データ活⽤の技術的な課題 7 • 各⼯程にある設備機器はそれぞれ異なるプロトコルをサポート • クラウドへのデータの送り⽅が分からない • 収集したデータをどう活⽤すればいいか分からない 現場環境が物理的にインターネット へのアウトバウンド経路を持たない
ケースもある
AWS IoT SiteWise 産業機器からデータを収集‧整理‧分析
AWS IoT SiteWise の特徴 9 • 産業⽤通信プロトコルで PLC などからデータ収集‧AWS連携が可能 ◦
ゲートウェイアプリによるデータ収集とクラウド転送 • フルマネージドなリアルタイム可視化機能 ◦ SiteWise Monitor 機能による直感的なグラフ描画 ◦ 可視化のインフラ管理が不要 • セキュリティ設定 ◦ OPCサーバ接続時の「パスワード認証」や 「証明書による相互認証」 • エラー時のデータバッファリング ◦ クラウドとの通信断の際、最⼤30⽇間の ローカルバッファリング
産業⽤通信プロトコルでデータをAWSに送信 10 • SiteWiseゲートウェイがデータ収集‧AWSへ転送を担当 • ユーザー側で MQTTS や HTTPS にプロトコル変換する必要がない
AWS IoT SiteWise の活⽤ 11
AWS IoT SiteWise による異常検知 (多変量異常検出)
AWS IoT SiteWiseの異常検知とは? 13 SiteWise に収集したデータを使って設備機器などの異常検出が可能 • 2025 年 7
⽉ 28 ⽇リリースの新機能 • コーディング不要‧機械学習の専⾨的な知識不要 • Grafana など他のアプリと連携しやすい • トレーニングデータの期間は最低14⽇間
3つの推論スケジュール 14 ⾼頻度推論(5分〜1時間) • センサー値の変化率が⾼いプロセスに最適 ◦ コンプレッサーなど急速に変化する機器や即時対応が必要な異常検出など 低頻度推論(2時間〜1⽇) • 動きの遅いプロセスや、毎⽇の評価で⼗分なユースケース
◦ バッチ処理やシフトベースの操作に向いている フレキシブル • 特定の曜⽇と時間帯を指定 ◦ ⽣産時間、シフト、計画的なダウンタイムなどにもとづいてスケジュール可能
AWS IoT Core との連携 15 • SiteWise から AWS IoT
Core に簡単にデータ連携できる ◦ AWS IoT Core の MQTT トピックにデータを転送 ◦ IoT Rule により簡単に他のサービスに連携可能 利⽤例 • 異常の推論スコアが指定値を超えたら担当者に通知する
AI を使った異常検知‧分析の利⽤例
AWS IoT SiteWise Assistant 17 • AIアシスタント対応の SiteWise Monitor や
API から利⽤可能 • 機器の稼働状況の確認やトラブル時の対応を⽣成 AI がアシスト ◦ トラブルシュートで確認する内容や交換部材の提⽰など • Amazon Kendra のインデックスをRAGとして利⽤するので料⾦に注意 https://aws.amazon.com/jp/blogs/industries/transforming-industrial-decision-making-with-aws-iot-sitewise-assistant/ より https://dev.classmethod.jp/articles/aws-iot-sitewise-cm-re-growth-2024-osaka-regrowth_osaka/
MCPを活⽤するケース(Model Context Protocol) 18 センサーデータを 時系列データベースに保存して⽣成AIクライアントを使って⾃ 然⾔語で分析する。 • 例:Amazon Timestream
for InfluxDB の MCP Serverを利⽤する ◦ https://awslabs.github.io/mcp/servers/timestream-for-influxdb-mcp-server/ ◦ 既存の仕組みの組み合わせだけで簡単に AI 利⽤を開始できる
リアルタイム異常検知 19 • Amazon Managed Service for Apache Flink を利⽤
• ランダムカットフォレストで最新のデータトレンドを反映しながら異常判定 • パターンを⾃動で学習するので「正常か異常か」の⼆者択⼀の判断ではない ◦ Apache Flink はオープンソースの統合ストリーム処理およびバッチ処理フレームワーク
その他のサービスや実現⽅法 20 • Amazon Quicksight ML Insight ◦ QuickSight はAWSが提供する
BI サービス ◦ QuickSight 上で推論した結果を QuickSight のダッシュボードで利⽤ • Amazon SageMaker ◦ 機械学習モデルを開発し、実際に活⽤するまでの⼀連の作業(構築‧学習‧デプロイ)を総 合的にサポートするサービス ◦ できることが多い反⾯、機械学習の知識やプログラミングのスキルが求められることが多い • Amazon Bedrock ◦ ⽣成 AI アプリケーションとエージェントを構築するための包括的なサービス ◦ ナレッジベースやエージェント機能を活⽤して様々なユースケースに応じたAI活⽤を実現 ◦ 例:収集したデータをもとにエージェント経由でアクションをデバイスに指⽰
まとめ 21 • AWS IoT SiteWise は製造業におけるデータ活⽤をサポートする専⾨サービス • AWS IoT
SiteWise の 異常検出機能でノーコーディングで異常検出を開始 • ⼀部開発が必要だが⽤途に応じて他のサービスの利⽤を検討 • 既存の仕組みやサービスをうまく活⽤することで、スモールスタートで⽣成 AI を活⽤したデータ分析基盤を作成できる
ご清聴ありがとうございました