Upgrade to Pro — share decks privately, control downloads, hide ads and more …

lfv kopp 2016

lfv kopp 2016

Flavor Violation in the Scalar Sector

Davide Gerbaudo

March 16, 2016
Tweet

More Decks by Davide Gerbaudo

Other Decks in Research

Transcript

  1. Flavor Violation in the Scalar Sector Joachim Kopp March 16,

    2016 Partially based on work done in collaboration with Malte Buschmann, Admir Greljo, Roni Harnik, Jernej Kamenik, Jia Liu, Marco Nardecchia, Jure Zupan, Xiao-Ping Wang Joachim Kopp Flavor Violation in the Scalar Sector 1
  2. Motivation In the SM L yij ¯ Li ej R

    H ! yij v p 2 ¯ ei L ei R yij p 2 ¯ ei L ej R h Masses and Yukawa couplings have same flavor structure. Beyond the SM L mij ¯ ei L ei R yij p 2 ¯ ei L ej R h Mass and Yukawa matrices can be misaligned in flavor space. Joachim Kopp Flavor Violation in the Scalar Sector 3
  3. Consequences Flavor physics bonanza h ! ``0 t ! hq

    ug ! th Model building playground Joachim Kopp Flavor Violation in the Scalar Sector 4
  4. Consequences Flavor physics bonanza h ! ``0 (! CMS excess

    in h ! µ⌧) t ! hq ug ! th Model building playground Joachim Kopp Flavor Violation in the Scalar Sector 4
  5. Low-energy constraints on LFV in the scalar sector h µ+

    e e+ µ Y ⇤ eµ PL + Yµe PR Y ⇤ eµ PL + Yµe PR M– ¯ M oscillations h N µ N e Y ⇤ µe PL + Yeµ PR µ–e conversion ⌧ h ⌧ µ µ Y ⇤ µ⌧ PL + Y⌧µ PR Y ⇤ ⌧µ PL + Yµ⌧ PR g 2, EDMs ⌧ µ µ µ Y ⇤ µµ PL + Yµµ PR = ⌧ ! µ diagrams ⌧ ! 3µ, µ ! 3e, etc. ⌧ h ⌧ ⌧ µ Y ⇤ ⌧⌧ PL + Y⌧⌧ PR Y ⇤ ⌧µ PL + Yµ⌧ PR µ h , Z t t ⌧ µ µ h , Z W W ⌧ µ µ h , Z W W ⌧ µ ⌧ ! µ , µ ! e , etc. Joachim Kopp Flavor Violation in the Scalar Sector 6
  6. Constraints on h ! µe 10-8 10-7 10-6 10-5 10-4

    10-8 10-7 10-6 10-5 10-4 Yukawa coupling »Yem » Yukawa coupling »Yme » m Æ eg m Æ 3e HapproxL m Æ e conv. Mu2e HprojectionL BRHhÆmeL = 10-5 10-12 10-11 10-10 10-9 10-8 10-7 10-6 Harnik JK Zupan, arXiv:1209.1397 see also Blankenburg Ellis Isidori, arXiv:1202.5704 Goudelis Lebedev Park, arXiv:1111.1715 Joachim Kopp Flavor Violation in the Scalar Sector 7 Assumption here: Diagonal Yukawa couplings unchanged from their SM values.
  7. Constraints on h ! ⌧µ and h ! ⌧e 10-3

    10-2 10-1 100 10-3 10-2 10-1 100 »Ymt » »Ytm » t Æ mg t Æ 3m Happrox .L Hg-2L m + ED M m Hg-2L m û Im HY tm Y mt L=0 »Y tm Y mt »=m m m t êv 2 BRHh ÆtmL = 0.99 10-3 10-2 10-1 0.5 0.75 10-5 10-4 10-3 10-2 10-1 100 10-5 10-4 10-3 10-2 10-1 100 »Yet » »Yte » t Æ eg t Æ 3e Happrox .L Hg- 2L e + ED M e Hg-2L e for Im HY te Y et L=0 »Y te Y et »=m e m t êv 2 BRHh ÆteL = 0.99 10-6 10-5 10-3 10-2 10-1 0.5 ED M e û ReHY te Y et L=0 Substantial flavor violation (BR(h ! ⌧µ, ⌧e) ⇠ 0.1) possible. Harnik JK Zupan, arXiv:1209.1397 see also: Blankenburg Ellis Isidori, arXiv:1202.5704 Goudelis Lebedev Park, arXiv:1111.1715 Davidson Greiner, arXiv:1001.0434 Joachim Kopp Flavor Violation in the Scalar Sector 8 Assumption here: Diagonal Yukawa couplings unchanged from their SM values.
  8. h ! ⌧µ search from CMS and ATLAS | τ

    µ |Y -4 10 -3 10 -2 10 -1 10 1 | µ τ |Y -4 10 -3 10 -2 10 -1 10 1 = 8 TeV s , -1 19.7 fb CMS preliminary BR<0.1% BR<1% BR<10% BR<50% τ τ → LHC h observed expected τ µ → h µ 3 → τ γ µ → τ 2 /v τ m µ |=m µ τ Y τ µ |Y CMS-PAS-HIG-14-005 Davidson Verdier, arXiv:1211.1248, Harnik JK Zupan, arXiv:1209.1397 ATLAS results compatible with CMS, but also with zero (arXiv:1508.03372) Note: if h ! ⌧µ is large, h ! ⌧e must be small (otherwise conflict with µ ! e ) Joachim Kopp Flavor Violation in the Scalar Sector 9
  9. Constraints on FCNC couplings to light quarks Tight constraints from

    neutral meson oscillations h ¯ d b ¯ b d Y ⇤ bd PL + Ydb PR Y ⇤ bd PL + Ydb PR t h h t ¯ u c Y ⇤ ct PL + Ytc PR Y ⇤ tu PL + Yut PR Y ⇤ ct PL + Ytc P Y ⇤ tu PL + Yut P But: Indirect constraints very weak for FCNC top couplings ) Discovery potential at the LHC Joachim Kopp Flavor Violation in the Scalar Sector 11
  10. FCNC t–h couplings h ¯ u, ¯ c W b

    t ¯ t g g u, c h b W t g t ! hq decay Relevant for tuh and tch couplings (no PDF suppression) ` + 2 or up to 5` single top + h production Only relevant for tuh couplings (PDF suppression for charm) ` + 2 or up to 5` Greljo Kamenik JK, arXiv:1404.1278 Joachim Kopp Flavor Violation in the Scalar Sector 12
  11. LHC limits on t ! hq Dedicated searches by both

    ATLAS and CMS. ATLAS BR(t ! cH) < 0.0046 $ q |ytc|2 + |yct |2 < 0.13 arXiv:1509.06047 see also arXiv:1403.6293 CMS BR(t ! cH) < 0.0047 $ q |ytc|2 + |yct |2 < 0.13 CMS-PAS-TOP-14-019 see also CMS-PAS-TOP-14-020 Joachim Kopp Flavor Violation in the Scalar Sector 13
  12. Future directions Include ug ! th: leads to 50% improvement

    Greljo Kamenik JK, arXiv:1404.1278 Joachim Kopp Flavor Violation in the Scalar Sector 14
  13. Future directions Include ug ! th: leads to 50% improvement

    Other final states I For instance: t ! hq ! jets ! Modified HEPTopTagger achieves S/B ⇠ 1% 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.0 0.2 0.4 0.6 0.8 1.0 arctanHm13 ê m12 L m23 ê m123 m23 > mh m13 > mh m 12 > m h t t Æ hhjj Æ b b b b jj 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.0 0.2 0.4 0.6 0.8 1.0 arctanHm13 ê m12 L m23 ê m123 m23 > mh m13 > mh m 12 > m h t t Æ W + W - b b Æ 4 j+ b b 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.0 0.2 0.4 0.6 0.8 1.0 arctanHm13 ê m12 L m23 ê m123 m23 > mh m13 > mh m 12 > m h QCD multijet Greljo Kamenik JK, arXiv:1404.1278 Plehn Salam Spannowsky Takeuchi Zerwas, arXiv:0910.5472, 1006.2833 Joachim Kopp Flavor Violation in the Scalar Sector 14
  14. Future directions Include ug ! th: leads to 50% improvement

    Other final states Distinguish tuh and tch couplings I Determine if ug ! th contributes to the signal I Observables: F ⌘ distribution of h, F lepton charges 13TeV, 1fb-1; ytq =yqt =0.13 ugÆth ppÆtt, tÆhc ugÆth cgÆth -4 -2 0 2 4 0 200 400 600 800 1000 hh Events I Result: For 5 discovery, 2 discrimination between tuh and tch. Khatibi Najafabadi, arXiv:1402.3073, Greljo Kamenik JK, arXiv:1404.1278 Joachim Kopp Flavor Violation in the Scalar Sector 14
  15. Interpreting the excess: models for h ! ⌧µ Two Higgs

    Doublet Models (e.g. Crivellin D’Ambrosio Heeck, arXiv:1503.00993) Joachim Kopp Flavor Violation in the Scalar Sector 16
  16. Interpreting the excess: models for h ! ⌧µ Two Higgs

    Doublet Models (e.g. Crivellin D’Ambrosio Heeck, arXiv:1503.00993) MFV and Froggatt–Nielsen scenarios (Dery Efrati Nir Soreq Susiˇ c, arXiv:1408.1371) Joachim Kopp Flavor Violation in the Scalar Sector 16
  17. Interpreting the excess: models for h ! ⌧µ Two Higgs

    Doublet Models (e.g. Crivellin D’Ambrosio Heeck, arXiv:1503.00993) MFV and Froggatt–Nielsen scenarios (Dery Efrati Nir Soreq Susiˇ c, arXiv:1408.1371) Leptoquarks (Cheung Keung Tseng, arXiv:1508.01897) Joachim Kopp Flavor Violation in the Scalar Sector 16
  18. Interpreting the excess: models for h ! ⌧µ Two Higgs

    Doublet Models (e.g. Crivellin D’Ambrosio Heeck, arXiv:1503.00993) MFV and Froggatt–Nielsen scenarios (Dery Efrati Nir Soreq Susiˇ c, arXiv:1408.1371) Leptoquarks (Cheung Keung Tseng, arXiv:1508.01897) Strongest signals in Type III 2HDM Dorsner et al., arXiv:1502.07784 Joachim Kopp Flavor Violation in the Scalar Sector 16
  19. Constraining FCNC in 2HDMs Basic idea: small FCNC for h

    related to large FCNC for H0 Joachim Kopp Flavor Violation in the Scalar Sector 17
  20. Constraining FCNC in 2HDMs Basic idea: small FCNC for h

    related to large FCNC for H0 H0 ! ⌧µ I Theorist-level recasting of CMS h ! ⌧µ search Observed CMS 8 TeV 19.7 fb 1 Expected 1Σ 2Σ 140 160 180 200 220 240 260 10 20 50 100 200 500 1000 2000 mH0 GeV 95 C.L. Limit on Σ pp H0 ΤΜ fb Λ 3 0 Λ 7 0 sinΑ 0.2 Η 2 tt 0 mH0 mH mA ΤΜ Search CMS BR h Τ Μ Best Fit CMS 140 160 180 200 220 240 260 0.00 0.02 0.04 0.06 0.08 mH0 GeV Η 2 ΤΜ Η 2 ΜΤ Buschmann JK Liu Wang, arXiv:1601.02616 Joachim Kopp Flavor Violation in the Scalar Sector 17
  21. Constraining FCNC in 2HDMs Basic idea: small FCNC for h

    related to large FCNC for H0 H0 ! ⌧µ Joachim Kopp Flavor Violation in the Scalar Sector 17
  22. Constraining FCNC in 2HDMs Basic idea: small FCNC for h

    related to large FCNC for H0 H0 ! ⌧µ FCNC top couplings in pp ! tH0 ! thh 500 1000 1500 2000 0.01 0.02 0.05 0.10 0.20 0.50 1.00 mH0 GeV BR mH mA0 mH0 Λ 3 3 Λ 7 0 sinΑ 0.2 Η 2 tu Η 2 ut 0.4 h h W W ZZ t t t q Expected 1Σ 2Σ t hu Sensitivity 300 400 500 600 700 800 900 1000 10 4 0.001 0.01 0.1 1 mH0 GeV BR t hu Sensitivity s 13 TeV 300 fb 1 mH mA0 mH0 Λ 3 3 Λ 7 0 sinΑ 0.2 tH0 thh Sensitivity SSL CMS Limit BR t hu Limit I Enhanced heavy scalar (H0) production I Promising decay: H0 ! hh Buschmann JK Liu Wang, arXiv:1601.02616 Joachim Kopp Flavor Violation in the Scalar Sector 17
  23. CP violation in the Scalar Sector h1 ` `0+ `m

    hk `n h1 ` `0+ `m `n hk h1 ` `0+ (a) (b) (c) Basic idea: Interference of tree and loop diagrams leads to CP violation Observable: asymmetry between h ! ⌧+µ and h ! ⌧ µ+ JK Nardecchia, arXiv:1406.5303 Joachim Kopp Flavor Violation in the Scalar Sector 19
  24. Sensitivity to CPV in the Scalar Sector for 2HDMs 0.

    0.002 0.004 0.006 0.008 0.01 10-1 100 101 Higgs mixing angle q12 =q13 Yukawa coupling Ytm q12 =q13 m h2 =190 GeV m h3 =200 GeV BRHh 1 Æ mtL limit »BRH hÆ mtL ACP »=10-1 10- 2 10- 3 10- 4 10- 5 10- 7 Sensitivity to CPV H±1s ,2 s L û 300 fb- 1 Best discovery potential in small mixing regime Would require a detection of h ! ⌧µ or h ! ⌧e very soon. JK Nardecchia, arXiv:1406.5303 Joachim Kopp Flavor Violation in the Scalar Sector 20
  25. Summary Large FCNC allowed in the ⌧ and top sectors

    Leptonic FCNC I Small excess in CMS Quark FCNC: tuh and tch I Include pp ! th I New final states (e.g. fully hadronic)? I Discrimination between tuh and tch Models for FCNC in the scalar sector I 2HDM offers largest signals I Interesting constraints from H0 ! ⌧µ and H0 ! hh CP violation in the scalar sector I Asymmetry between h ! ⌧+µ and h ! ⌧ µ+ may be observable if CMS excess is confirmed Joachim Kopp Flavor Violation in the Scalar Sector 22
  26. h ! ⌧µ search from CMS Main features Compute µ⌧

    invariant mass in collinear approximation Muon pT much higher than in h ! ⌧⌧µ Use and MT cuts Sensitive to gg ! h Harnik JK Zupan, arXiv:1209.1397 Davidson Verdier, :arXiv:1211.1248 | τ µ |Y -4 10 -3 10 -2 10 -1 10 1 | µ τ |Y -4 10 -3 10 -2 10 -1 10 1 = 8 TeV s , -1 19.7 fb CMS preliminary BR<0.1% BR<1% BR<10% BR<50% τ τ → LHC h observed expected τ µ → h µ 3 → τ γ µ → τ 2 /v τ m µ |=m µ τ Y τ µ |Y CMS-PAS-HIG-14-005 Joachim Kopp Flavor Violation in the Scalar Sector 25
  27. Constraints on FCNC couplings to light quarks Tight constraints from

    neutral meson oscillations h ¯ d b ¯ b d Y ⇤ bd PL + Ydb PR Y ⇤ bd PL + Ydb PR t h h t ¯ u c ¯ c u Y ⇤ ct PL + Ytc PR Y ⇤ tu PL + Yut PR Y ⇤ ct PL + Ytc PR Y ⇤ tu PL + Yut PR Joachim Kopp Flavor Violation in the Scalar Sector 26
  28. Constraints on FCNC couplings to light quarks Tight constraints from

    neutral meson oscillations Work in Effective Field Theory: Heff = Cdb 2 (¯ bR dL)2 + ˜ Cdb 2 (¯ bL dR)2 + Cdb 4 (¯ bL dR)(¯ bR dL) + . . . Wilson coefficients constrained by UTfit (Bona et al.), arXiv:0707.0636 see also Blankenburg Ellis Isidori, arXiv:1202.5704 Technique Coupling Constraint D0 oscillations |Yuc|2, |Ycu|2 < 5.0 ⇥ 10 9 |Yuc Ycu| < 7.5 ⇥ 10 10 B0 d oscillations |Ydb|2, |Ybd |2 < 2.3 ⇥ 10 8 |Ydb Ybd | < 3.3 ⇥ 10 9 B0 s oscillations |Ysb|2, |Ybs|2 < 1.8 ⇥ 10 6 |Ysb Ybs| < 2.5 ⇥ 10 7 K0 oscillations <(Y2 ds ), <(Y2 sd ) [ 5.9 . . . 5.6] ⇥ 10 10 =(Y2 ds ), =(Y2 sd ) [ 2.9 . . . 1.6] ⇥ 10 12 <(Y⇤ ds Ysd ) [ 5.6 . . . 5.6] ⇥ 10 11 =(Y⇤ ds Ysd ) [ 1.4 . . . 2.8] ⇥ 10 13 Joachim Kopp Flavor Violation in the Scalar Sector 26
  29. The fully hadronic final state Analysis 1: pp ! ¯

    t(t ! hj) ! hadrons I Tagging SM t ! Wb decays: HEPTopTagger Plehn Salam Spannowsky Takeuchi Zerwas, arXiv:0910.5472, 1006.2833 F Cluster “fat jets” (R = 1.5) F Uncluster to find three subjets most likely to originate from top decay based on their invariant mass m123 F Along the way, use filtering to remove pile-up and underlying event contamination F Impose cuts on invariant masses of subjet pairs to require one pair to be ⇠ mW Joachim Kopp Flavor Violation in the Scalar Sector 27 Greljo Kamenik JK, 1404.1278
  30. The fully hadronic final state Analysis 1: pp ! ¯

    t(t ! hj) ! hadrons I Tagging SM t ! Wb decays: HEPTopTagger Plehn Salam Spannowsky Takeuchi Zerwas, arXiv:0910.5472, 1006.2833 I Tagging FCNC t ! hq decays: Modified HEPTopTagger with adapted kinematic cuts 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.0 0.2 0.4 0.6 0.8 1.0 arctanHm13 ê m12 L m23 ê m123 m23 > mh m13 > mh m 12 > m h t t Æ hhjj Æ b b b b jj 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.0 0.2 0.4 0.6 0.8 1.0 arctanHm13 ê m12 L m23 ê m123 m23 > mh m13 > mh m 12 > m h t t Æ W + W - b b Æ 4 j+ b b 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.0 0.2 0.4 0.6 0.8 1.0 arctanHm13 ê m12 L m23 ê m123 m23 > mh m13 > mh m 12 > m h QCD multijet Joachim Kopp Flavor Violation in the Scalar Sector 27 Greljo Kamenik JK, 1404.1278
  31. The fully hadronic final state Analysis 1: pp ! ¯

    t(t ! hj) ! hadrons I Tagging SM t ! Wb decays: HEPTopTagger Plehn Salam Spannowsky Takeuchi Zerwas, arXiv:0910.5472, 1006.2833 I Tagging FCNC t ! hq decays: Modified HEPTopTagger with adapted kinematic cuts I Require b tags in likely b subjets I Dominant backgrounds: F t¯ t F single top F QCD Joachim Kopp Flavor Violation in the Scalar Sector 27 Greljo Kamenik JK, 1404.1278
  32. The fully hadronic final state Analysis 1: pp ! ¯

    t(t ! hj) ! hadrons Analysis 2: pp ! th ! hadrons (single top + Higgs productions) I Tagging SM t ! Wb decays: HEPTopTagger Plehn Salam Spannowsky Takeuchi Zerwas, arXiv:0910.5472, 1006.2833 I Higgs tagging: Mass drop tagger Butterworth Davison Rubin Salam 0802.2470; Cacciari Salam Soyez 1111.6097 I Require b tags in likely b subjets I Cuts on mH (reconstructed Higgs mass) and |⌘h| (reconstructed Higgs rapidity) 60 80 100 120 140 160 180 200 10 2 10 1 100 101 102 103 Reconstructed m H GeV Cross section per bin fb 3 2 1 0 1 2 3 10 2 10 1 100 101 102 103 Higgs pseudorapidity Ηh Cross section per bin fb single t tt QCD t H t t Hj Joachim Kopp Flavor Violation in the Scalar Sector 27 Greljo Kamenik JK, 1404.1278
  33. Example: Effective Field Theory LEFT mi ¯ `i L `i

    R Yh ij (¯ `i L `j R )h + h.c. , Result: Aµ⌧ CP = (h ! µ ⌧+) (h ! µ+⌧ ) (h ! µ ⌧+) + (h ! µ+⌧ ) = 1 log 2 8⇡ Im ⇥ Yh ⌧⌧ Yh eµ Yh⇤ e⌧ Yh⇤ µ⌧ Yh µe Yh⇤ ⌧e Yh⇤ ⌧µ ⇤ Yh µ⌧ 2 + Yh ⌧µ 2 + 1 8⇡ m2 ⌧ m2 h Yh µ⌧ 2 Yh ⌧µ 2 Yh µ⌧ 2 + Yh ⌧µ 2 Im ⇥ (Yh ⌧⌧ )2 ⇤ . ... suppressed by m2 ⌧ /m2 h and Yh eµ , Yh µe . Joachim Kopp Flavor Violation in the Scalar Sector 28
  34. Example: A Two Higgs-Doublet Model L p 2mi v ij

    ¯ Li L `j R 1 p 2Yij ¯ Li L `j R 2 + h.c. , In the physical basis: L = mi ¯ `i L `i R X r=1,2,3 Yhr ij ¯ `i L `j R hr + h.c. (r = 1, 2, 3) with Yhr ij = mi ij v O1r + Yij O2r + iYij O3r , O = SO(3) (real 3 ⇥ 3) rotation matrix JK Nardecchia, arXiv:1406.5303 Joachim Kopp Flavor Violation in the Scalar Sector 29
  35. Example: A Two Higgs-Doublet Model L p 2mi v ij

    ¯ Li L `j R 1 p 2Yij ¯ Li L `j R 2 + h.c. , Result: Aµ⌧ CP = X ↵=2,3 1 4⇡ |Y⌧µ |2 |Yµ⌧ |2 |Y⌧µ |2 + |Yµ⌧ |2 ✓ |Yµ⌧ |2 + |Y⌧µ |2 + |Y⌧⌧ |2 ◆ ⇥ R↵ ⇥  g ✓ m2 h m2 h↵ ◆ + m2 h m2 h m2 h↵ with R↵ = (O3↵ O21 O2↵ O31) (O2↵ O21 + O3↵ O31) O2 21 + O2 31 . . . suppressed only by loop factor JK Nardecchia, arXiv:1406.5303 Joachim Kopp Flavor Violation in the Scalar Sector 29