2016 Partially based on work done in collaboration with Malte Buschmann, Admir Greljo, Roni Harnik, Jernej Kamenik, Jia Liu, Marco Nardecchia, Jure Zupan, Xiao-Ping Wang Joachim Kopp Flavor Violation in the Scalar Sector 1
H ! yij v p 2 ¯ ei L ei R yij p 2 ¯ ei L ej R h Masses and Yukawa couplings have same flavor structure. Beyond the SM L mij ¯ ei L ei R yij p 2 ¯ ei L ej R h Mass and Yukawa matrices can be misaligned in flavor space. Joachim Kopp Flavor Violation in the Scalar Sector 3
e e+ µ Y ⇤ eµ PL + Yµe PR Y ⇤ eµ PL + Yµe PR M– ¯ M oscillations h N µ N e Y ⇤ µe PL + Yeµ PR µ–e conversion ⌧ h ⌧ µ µ Y ⇤ µ⌧ PL + Y⌧µ PR Y ⇤ ⌧µ PL + Yµ⌧ PR g 2, EDMs ⌧ µ µ µ Y ⇤ µµ PL + Yµµ PR = ⌧ ! µ diagrams ⌧ ! 3µ, µ ! 3e, etc. ⌧ h ⌧ ⌧ µ Y ⇤ ⌧⌧ PL + Y⌧⌧ PR Y ⇤ ⌧µ PL + Yµ⌧ PR µ h , Z t t ⌧ µ µ h , Z W W ⌧ µ µ h , Z W W ⌧ µ ⌧ ! µ , µ ! e , etc. Joachim Kopp Flavor Violation in the Scalar Sector 6
10-8 10-7 10-6 10-5 10-4 Yukawa coupling »Yem » Yukawa coupling »Yme » m Æ eg m Æ 3e HapproxL m Æ e conv. Mu2e HprojectionL BRHhÆmeL = 10-5 10-12 10-11 10-10 10-9 10-8 10-7 10-6 Harnik JK Zupan, arXiv:1209.1397 see also Blankenburg Ellis Isidori, arXiv:1202.5704 Goudelis Lebedev Park, arXiv:1111.1715 Joachim Kopp Flavor Violation in the Scalar Sector 7 Assumption here: Diagonal Yukawa couplings unchanged from their SM values.
10-2 10-1 100 10-3 10-2 10-1 100 »Ymt » »Ytm » t Æ mg t Æ 3m Happrox .L Hg-2L m + ED M m Hg-2L m û Im HY tm Y mt L=0 »Y tm Y mt »=m m m t êv 2 BRHh ÆtmL = 0.99 10-3 10-2 10-1 0.5 0.75 10-5 10-4 10-3 10-2 10-1 100 10-5 10-4 10-3 10-2 10-1 100 »Yet » »Yte » t Æ eg t Æ 3e Happrox .L Hg- 2L e + ED M e Hg-2L e for Im HY te Y et L=0 »Y te Y et »=m e m t êv 2 BRHh ÆteL = 0.99 10-6 10-5 10-3 10-2 10-1 0.5 ED M e û ReHY te Y et L=0 Substantial flavor violation (BR(h ! ⌧µ, ⌧e) ⇠ 0.1) possible. Harnik JK Zupan, arXiv:1209.1397 see also: Blankenburg Ellis Isidori, arXiv:1202.5704 Goudelis Lebedev Park, arXiv:1111.1715 Davidson Greiner, arXiv:1001.0434 Joachim Kopp Flavor Violation in the Scalar Sector 8 Assumption here: Diagonal Yukawa couplings unchanged from their SM values.
µ |Y -4 10 -3 10 -2 10 -1 10 1 | µ τ |Y -4 10 -3 10 -2 10 -1 10 1 = 8 TeV s , -1 19.7 fb CMS preliminary BR<0.1% BR<1% BR<10% BR<50% τ τ → LHC h observed expected τ µ → h µ 3 → τ γ µ → τ 2 /v τ m µ |=m µ τ Y τ µ |Y CMS-PAS-HIG-14-005 Davidson Verdier, arXiv:1211.1248, Harnik JK Zupan, arXiv:1209.1397 ATLAS results compatible with CMS, but also with zero (arXiv:1508.03372) Note: if h ! ⌧µ is large, h ! ⌧e must be small (otherwise conflict with µ ! e ) Joachim Kopp Flavor Violation in the Scalar Sector 9
neutral meson oscillations h ¯ d b ¯ b d Y ⇤ bd PL + Ydb PR Y ⇤ bd PL + Ydb PR t h h t ¯ u c Y ⇤ ct PL + Ytc PR Y ⇤ tu PL + Yut PR Y ⇤ ct PL + Ytc P Y ⇤ tu PL + Yut P But: Indirect constraints very weak for FCNC top couplings ) Discovery potential at the LHC Joachim Kopp Flavor Violation in the Scalar Sector 11
t ¯ t g g u, c h b W t g t ! hq decay Relevant for tuh and tch couplings (no PDF suppression) ` + 2 or up to 5` single top + h production Only relevant for tuh couplings (PDF suppression for charm) ` + 2 or up to 5` Greljo Kamenik JK, arXiv:1404.1278 Joachim Kopp Flavor Violation in the Scalar Sector 12
Other final states I For instance: t ! hq ! jets ! Modified HEPTopTagger achieves S/B ⇠ 1% 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.0 0.2 0.4 0.6 0.8 1.0 arctanHm13 ê m12 L m23 ê m123 m23 > mh m13 > mh m 12 > m h t t Æ hhjj Æ b b b b jj 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.0 0.2 0.4 0.6 0.8 1.0 arctanHm13 ê m12 L m23 ê m123 m23 > mh m13 > mh m 12 > m h t t Æ W + W - b b Æ 4 j+ b b 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.0 0.2 0.4 0.6 0.8 1.0 arctanHm13 ê m12 L m23 ê m123 m23 > mh m13 > mh m 12 > m h QCD multijet Greljo Kamenik JK, arXiv:1404.1278 Plehn Salam Spannowsky Takeuchi Zerwas, arXiv:0910.5472, 1006.2833 Joachim Kopp Flavor Violation in the Scalar Sector 14
Other final states Distinguish tuh and tch couplings I Determine if ug ! th contributes to the signal I Observables: F ⌘ distribution of h, F lepton charges 13TeV, 1fb-1; ytq =yqt =0.13 ugÆth ppÆtt, tÆhc ugÆth cgÆth -4 -2 0 2 4 0 200 400 600 800 1000 hh Events I Result: For 5 discovery, 2 discrimination between tuh and tch. Khatibi Najafabadi, arXiv:1402.3073, Greljo Kamenik JK, arXiv:1404.1278 Joachim Kopp Flavor Violation in the Scalar Sector 14
Doublet Models (e.g. Crivellin D’Ambrosio Heeck, arXiv:1503.00993) MFV and Froggatt–Nielsen scenarios (Dery Efrati Nir Soreq Susiˇ c, arXiv:1408.1371) Leptoquarks (Cheung Keung Tseng, arXiv:1508.01897) Strongest signals in Type III 2HDM Dorsner et al., arXiv:1502.07784 Joachim Kopp Flavor Violation in the Scalar Sector 16
related to large FCNC for H0 H0 ! ⌧µ FCNC top couplings in pp ! tH0 ! thh 500 1000 1500 2000 0.01 0.02 0.05 0.10 0.20 0.50 1.00 mH0 GeV BR mH mA0 mH0 Λ 3 3 Λ 7 0 sinΑ 0.2 Η 2 tu Η 2 ut 0.4 h h W W ZZ t t t q Expected 1Σ 2Σ t hu Sensitivity 300 400 500 600 700 800 900 1000 10 4 0.001 0.01 0.1 1 mH0 GeV BR t hu Sensitivity s 13 TeV 300 fb 1 mH mA0 mH0 Λ 3 3 Λ 7 0 sinΑ 0.2 tH0 thh Sensitivity SSL CMS Limit BR t hu Limit I Enhanced heavy scalar (H0) production I Promising decay: H0 ! hh Buschmann JK Liu Wang, arXiv:1601.02616 Joachim Kopp Flavor Violation in the Scalar Sector 17
hk `n h1 ` `0+ `m `n hk h1 ` `0+ (a) (b) (c) Basic idea: Interference of tree and loop diagrams leads to CP violation Observable: asymmetry between h ! ⌧+µ and h ! ⌧ µ+ JK Nardecchia, arXiv:1406.5303 Joachim Kopp Flavor Violation in the Scalar Sector 19
0.002 0.004 0.006 0.008 0.01 10-1 100 101 Higgs mixing angle q12 =q13 Yukawa coupling Ytm q12 =q13 m h2 =190 GeV m h3 =200 GeV BRHh 1 Æ mtL limit »BRH hÆ mtL ACP »=10-1 10- 2 10- 3 10- 4 10- 5 10- 7 Sensitivity to CPV H±1s ,2 s L û 300 fb- 1 Best discovery potential in small mixing regime Would require a detection of h ! ⌧µ or h ! ⌧e very soon. JK Nardecchia, arXiv:1406.5303 Joachim Kopp Flavor Violation in the Scalar Sector 20
Leptonic FCNC I Small excess in CMS Quark FCNC: tuh and tch I Include pp ! th I New final states (e.g. fully hadronic)? I Discrimination between tuh and tch Models for FCNC in the scalar sector I 2HDM offers largest signals I Interesting constraints from H0 ! ⌧µ and H0 ! hh CP violation in the scalar sector I Asymmetry between h ! ⌧+µ and h ! ⌧ µ+ may be observable if CMS excess is confirmed Joachim Kopp Flavor Violation in the Scalar Sector 22
neutral meson oscillations h ¯ d b ¯ b d Y ⇤ bd PL + Ydb PR Y ⇤ bd PL + Ydb PR t h h t ¯ u c ¯ c u Y ⇤ ct PL + Ytc PR Y ⇤ tu PL + Yut PR Y ⇤ ct PL + Ytc PR Y ⇤ tu PL + Yut PR Joachim Kopp Flavor Violation in the Scalar Sector 26
t(t ! hj) ! hadrons I Tagging SM t ! Wb decays: HEPTopTagger Plehn Salam Spannowsky Takeuchi Zerwas, arXiv:0910.5472, 1006.2833 F Cluster “fat jets” (R = 1.5) F Uncluster to find three subjets most likely to originate from top decay based on their invariant mass m123 F Along the way, use filtering to remove pile-up and underlying event contamination F Impose cuts on invariant masses of subjet pairs to require one pair to be ⇠ mW Joachim Kopp Flavor Violation in the Scalar Sector 27 Greljo Kamenik JK, 1404.1278
t(t ! hj) ! hadrons I Tagging SM t ! Wb decays: HEPTopTagger Plehn Salam Spannowsky Takeuchi Zerwas, arXiv:0910.5472, 1006.2833 I Tagging FCNC t ! hq decays: Modified HEPTopTagger with adapted kinematic cuts 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.0 0.2 0.4 0.6 0.8 1.0 arctanHm13 ê m12 L m23 ê m123 m23 > mh m13 > mh m 12 > m h t t Æ hhjj Æ b b b b jj 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.0 0.2 0.4 0.6 0.8 1.0 arctanHm13 ê m12 L m23 ê m123 m23 > mh m13 > mh m 12 > m h t t Æ W + W - b b Æ 4 j+ b b 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.0 0.2 0.4 0.6 0.8 1.0 arctanHm13 ê m12 L m23 ê m123 m23 > mh m13 > mh m 12 > m h QCD multijet Joachim Kopp Flavor Violation in the Scalar Sector 27 Greljo Kamenik JK, 1404.1278
t(t ! hj) ! hadrons I Tagging SM t ! Wb decays: HEPTopTagger Plehn Salam Spannowsky Takeuchi Zerwas, arXiv:0910.5472, 1006.2833 I Tagging FCNC t ! hq decays: Modified HEPTopTagger with adapted kinematic cuts I Require b tags in likely b subjets I Dominant backgrounds: F t¯ t F single top F QCD Joachim Kopp Flavor Violation in the Scalar Sector 27 Greljo Kamenik JK, 1404.1278
t(t ! hj) ! hadrons Analysis 2: pp ! th ! hadrons (single top + Higgs productions) I Tagging SM t ! Wb decays: HEPTopTagger Plehn Salam Spannowsky Takeuchi Zerwas, arXiv:0910.5472, 1006.2833 I Higgs tagging: Mass drop tagger Butterworth Davison Rubin Salam 0802.2470; Cacciari Salam Soyez 1111.6097 I Require b tags in likely b subjets I Cuts on mH (reconstructed Higgs mass) and |⌘h| (reconstructed Higgs rapidity) 60 80 100 120 140 160 180 200 10 2 10 1 100 101 102 103 Reconstructed m H GeV Cross section per bin fb 3 2 1 0 1 2 3 10 2 10 1 100 101 102 103 Higgs pseudorapidity Ηh Cross section per bin fb single t tt QCD t H t t Hj Joachim Kopp Flavor Violation in the Scalar Sector 27 Greljo Kamenik JK, 1404.1278
¯ Li L `j R 1 p 2Yij ¯ Li L `j R 2 + h.c. , In the physical basis: L = mi ¯ `i L `i R X r=1,2,3 Yhr ij ¯ `i L `j R hr + h.c. (r = 1, 2, 3) with Yhr ij = mi ij v O1r + Yij O2r + iYij O3r , O = SO(3) (real 3 ⇥ 3) rotation matrix JK Nardecchia, arXiv:1406.5303 Joachim Kopp Flavor Violation in the Scalar Sector 29
¯ Li L `j R 1 p 2Yij ¯ Li L `j R 2 + h.c. , Result: Aµ⌧ CP = X ↵=2,3 1 4⇡ |Y⌧µ |2 |Yµ⌧ |2 |Y⌧µ |2 + |Yµ⌧ |2 ✓ |Yµ⌧ |2 + |Y⌧µ |2 + |Y⌧⌧ |2 ◆ ⇥ R↵ ⇥ g ✓ m2 h m2 h↵ ◆ + m2 h m2 h m2 h↵ with R↵ = (O3↵ O21 O2↵ O31) (O2↵ O21 + O3↵ O31) O2 21 + O2 31 . . . suppressed only by loop factor JK Nardecchia, arXiv:1406.5303 Joachim Kopp Flavor Violation in the Scalar Sector 29