Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
未知なるデータの迷宮へ ~新卒アナリストの苦悩と挑戦~
Search
gree_tech
PRO
October 25, 2024
Video
Technology
1
750
未知なるデータの迷宮へ ~新卒アナリストの苦悩と挑戦~
GREE Tech Conference 2024で発表された資料です。
https://techcon.gree.jp/2024/session/Short-Session-1
gree_tech
PRO
October 25, 2024
Tweet
Share
Video
More Decks by gree_tech
See All by gree_tech
変わるもの、変わらないもの :OSSアーキテクチャで実現する持続可能なシステム
gree_tech
PRO
0
2.3k
マネジメントに役立つ Google Cloud
gree_tech
PRO
0
26
今この時代に技術とどう向き合うべきか
gree_tech
PRO
3
2.4k
生成AIを開発組織にインストールするために: REALITYにおけるガバナンス・技術・文化へのアプローチ
gree_tech
PRO
0
150
安く・手軽に・現場発 既存資産を生かすSlack×AI検索Botの作り方
gree_tech
PRO
0
150
生成AIを安心して活用するために──「情報セキュリティガイドライン」策定とポイント
gree_tech
PRO
1
1.5k
あうもんと学ぶGenAIOps
gree_tech
PRO
0
270
MVP開発における生成AIの活用と導入事例
gree_tech
PRO
0
290
機械学習・生成AIが拓く事業価値創出の最前線
gree_tech
PRO
0
210
Other Decks in Technology
See All in Technology
30分であなたをOmniのファンにしてみせます~分析画面のクリック操作をそのままコード化できるAI-ReadyなBIツール~
sagara
0
180
AI駆動開発の実践とその未来
eltociear
1
250
Python 3.14 Overview
lycorptech_jp
PRO
1
120
ウェルネス SaaS × AI、1,000万ユーザーを支える 業界特化 AI プロダクト開発への道のり
hacomono
PRO
0
140
多様なデジタルアイデンティティを攻撃からどうやって守るのか / 20251212
ayokura
0
490
「図面」から「法則」へ 〜メタ視点で読み解く現代のソフトウェアアーキテクチャ〜
scova0731
0
340
ActiveJobUpdates
igaiga
1
140
LLM-Readyなデータ基盤を高速に構築するためのアジャイルデータモデリングの実例
kashira
0
270
年間40件以上の登壇を続けて見えた「本当の発信力」/ 20251213 Masaki Okuda
shift_evolve
PRO
1
140
AWS re:Invent 2025~初参加の成果と学び~
kubomasataka
0
130
NIKKEI Tech Talk #41: セキュア・バイ・デザインからクラウド管理を考える
sekido
PRO
0
160
S3を正しく理解するための内部構造の読解
nrinetcom
PRO
2
170
Featured
See All Featured
The Pragmatic Product Professional
lauravandoore
37
7.1k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Git: the NoSQL Database
bkeepers
PRO
432
66k
The Language of Interfaces
destraynor
162
25k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1.1k
Leveraging LLMs for student feedback in introductory data science courses - posit::conf(2025)
minecr
0
81
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
740
Rails Girls Zürich Keynote
gr2m
95
14k
[SF Ruby Conf 2025] Rails X
palkan
0
540
エンジニアに許された特別な時間の終わり
watany
105
220k
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
160
Lightning talk: Run Django tests with GitHub Actions
sabderemane
0
84
Transcript
未知なるデータの迷宮へ ~新卒アナリストの苦悩と挑戦~ 株式会社WFS データアナリスト 福地一真
福地 一真(Fukuchi Kazuma) 略歴 2024/04/01 グリー株式会社入社 2024/04/15~ 主に『アナザーエデン 時空を超える猫』に関する 分析業務に従事
グリー株式会社所属、株式会社WFS (以降WFS)に出向中 データアナリスト 2
Agenda WFSアナリシス( = WFSのアナリシスチーム ) の働く環境 配属初期に直面した課題 解決のヒント ~ WFSアナリシスの業務フロー紹介
~ 自分なりの対策を試した結果 まとめ 3 1 2 3 4 5
WFSアナリシスの働く環境 4
WFSアナリシスの働く環境 5 2 1 納期に対して裁量がある → どこまでも深堀れる 使うツールが非常に多い 3 新卒で配属直後でもプロダクト への影響が大きい判断に関わる
配属初期の私の様子 6
初期状態 How to survive ? 7 先輩に聞きつつ 手探り 各種ツールに 必死で慣れる
手戻りが多すぎてキツい! 8
課題(手戻りの原因の推移) 作業内容を理解 ≠ 作業目的を理解 好奇心・作業能力の向上が裏目に 9 最初期 <錯覚> 配属3ヶ月くらい <暴走>
このままではいけない 10
理想状態 11 2 1 分析の目的を事前に把握 手戻り・寄り道は最小限
理想に近づくための秘訣 12
WFSアナリシスの業務フロー 13 3 2 1 依頼の受理・要件定義 データ収集・分析設計 結果の検証・依頼者への報告
業務フローで大事な所 14 3 2 1 依頼の受理・要件定義 データ収集・分析設計 結果の検証・依頼者への報告 WFSアナリシスのこだわりPoint 分析を始める前に
• 依頼達成による付加価値を言語化する • 取るべきデータをすべて書き出す • どんな結果になるか予想する
新卒は基本 “作業者” 15 あれ…?
そもそも作業者の側面が強い職も 16
アナリシスの先輩が上流でやっていること 17 3 2 1 依頼の受理・要件定義 データ収集・分析設計 結果の検証・依頼者への報告 プロデューサーなど 意思決定者
アナリシスの先輩 依 頼 報 告
要件定義しない人も、ほぼ同じフローに乗れる! 18 3 2 1 依頼の受理・要件 定義 把握 データ収集・分析設計 結果の検証・先輩への報告
アナリシスの先輩 自分 依 頼 報 告
要件定義しない人も、仕事の動き出しが大事 19 3 2 1 依頼の受理・要件把握 データ収集・分析設計 結果の検証・先輩への報告 アナリシスの先輩 自分
依 頼 報 告 ここが大事!
先輩から仕事をもらう時の変化 20 3 2 1 依頼の受理・要件把握 データ収集・分析設計 結果の検証・先輩への報告 新しく取り入れた働き方 作業を始める前に
• 成果の条件を言語化+アウトプットの形式 を確定させる • データを組み合わせる流れを書き出す • どんな結果が出るか予想する
例:招待キャンペーン(CP)の効果測定 21 • 成果の条件:次回以降もやるべきか判断できる • アウトプットの形式を確定させる 日毎のインストール者を CP通過 / 非通過に分けて
積み上げ棒グラフにする CP効果! 普通のインストール
例:招待キャンペーン(CP)の効果測定 22 • データを組み合わせる流れを書き出す CP通過者の集合 日毎のインストール者の集合 取るための流れ 取るための流れ 情報を追加
例:招待キャンペーン(CP)の効果測定 23 • どんな結果が出るか予想する CP通過割合は他のゲームで 実施した時と同等と予想
ほぼ手戻り無く示唆の共有まで行けた! 24
自分に起きた良い変化 25 2 1 好奇心で暴走 → 好奇心を大事にしつつ クリアな見通しのまま ゴールまで到達 作業内容の把握に必死 → 作業目的を質問
自分に起きた良い変化 26 2 1 好奇心で暴走 → 好奇心を大事にしつつ クリアな見通しのまま ゴールまで到達 作業内容の把握に必死 → 作業目的を質問
手戻りが減少!!
注意点 27 2 1 質問の仕方は丁寧に 時間に追われてもフローを堅持
まとめ 28 WFSアナリシスは依頼の受理・要件定義を重視している — 分析で無駄なく付加価値を出すカギになっている
ご清聴ありがとうございました 29
None