Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Introduction to Sparse Modeling for Software En...
Search
Sponsored
·
SiteGround - Reliable hosting with speed, security, and support you can count on.
→
Hacarus Inc.
October 13, 2018
Technology
1
120
Introduction to Sparse Modeling for Software Engineers
Presentation slides at GDG DevFest Philippines 2018
*
https://devfest.gdgph.org/
Hacarus Inc.
October 13, 2018
Tweet
Share
More Decks by Hacarus Inc.
See All by Hacarus Inc.
GitLab CI/CD で C#/WPFアプリケーションのテストとインストーラーのビルド・デプロイを自動化する
hacarus
0
1.3k
QA4AIに則ったMLOpsツールの活用
hacarus
0
710
0から協働ロボット外観検査システムを3ヵ月で具現化した軌跡
hacarus
0
260
ワンちゃんの健康を願う皆様に送る 犬心電図AI解析プロダクト紹介_AWS DevDay2022
hacarus
0
200
犬の心電AI解析プロダクト開発奮闘記 _クラウドからハード開発までてんこ盛り
hacarus
0
1.8k
ExplainableAIの概要とAmazon SageMaker Clarifyでの実装例
hacarus
0
1.1k
AWS Step Functions を用いた非同期学習処理の例
hacarus
0
1.4k
Dashでmyダッシュボードを作ろう ーpytrendsで見るコロナの感染拡大時期ー
hacarus
0
1.5k
Interpretable Machine Learning: モデル非依存な解釈手法の紹介
hacarus
0
1.1k
Other Decks in Technology
See All in Technology
Tebiki Engineering Team Deck
tebiki
0
24k
Context Engineeringの取り組み
nutslove
0
350
データの整合性を保ちたいだけなんだ
shoheimitani
8
3.1k
30万人の同時アクセスに耐えたい!新サービスの盤石なリリースを支える負荷試験 / SRE Kaigi 2026
genda
4
1.3k
Cosmos World Foundation Model Platform for Physical AI
takmin
0
900
[CV勉強会@関東 World Model 読み会] Orbis: Overcoming Challenges of Long-Horizon Prediction in Driving World Models (Mousakhan+, NeurIPS 2025)
abemii
0
140
SREチームをどう作り、どう育てるか ― Findy横断SREのマネジメント
rvirus0817
0
270
AIと新時代を切り拓く。これからのSREとメルカリIBISの挑戦
0gm
0
1.2k
10Xにおける品質保証活動の全体像と改善 #no_more_wait_for_test
nihonbuson
PRO
2
290
顧客との商談議事録をみんなで読んで顧客解像度を上げよう
shibayu36
0
240
学生・新卒・ジュニアから目指すSRE
hiroyaonoe
2
620
OCI Database Management サービス詳細
oracle4engineer
PRO
1
7.4k
Featured
See All Featured
Everyday Curiosity
cassininazir
0
130
AI: The stuff that nobody shows you
jnunemaker
PRO
2
260
Building Adaptive Systems
keathley
44
2.9k
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
66
37k
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.7k
Site-Speed That Sticks
csswizardry
13
1.1k
sira's awesome portfolio website redesign presentation
elsirapls
0
150
What the history of the web can teach us about the future of AI
inesmontani
PRO
1
430
Design in an AI World
tapps
0
140
Max Prin - Stacking Signals: How International SEO Comes Together (And Falls Apart)
techseoconnect
PRO
0
86
The Director’s Chair: Orchestrating AI for Truly Effective Learning
tmiket
1
96
The Invisible Side of Design
smashingmag
302
51k
Transcript
,8 0 0 2 1 , 1 0 2 00
3 0 0 3 88 0
5BLBTIJ4PNFEB !ULTNE • $50BU)BDBSVT *OD • .BTUFS`TEFHSFFPG*OGPSNBUJPO4DJFODFBU ,ZPUP6OJWFSTJUZ • )PTUTEBUBTDJFOUJTUDPNNVOJUZJO,"/4"*
• IUUQTNMNLBOTBJDPOOQBTTDPN
"CPVU)BDBSVT • 5BDLMFNFEJDBM JOEVTUSJBMJTTVFTCZ"* • 'PDVTPO4QBSTF.PEFMJOH • 4VQQPSUFECZQSPGFTTPST • .S.BTBZVLJ0I[FLJ
GSPN5PIPLV6OJWFSTJUZ • .S,BPSV,BXBNPUPGSPN4IJHB6OJWFSTJUZ
"MJUUMFNPSFBCPVUVT
5BLFBXBZT • (FUCBTJDDPODFQUPG4QBSTF.PEFMJOH • ,OPXBDUVBMJNQMFNFOUBUJPOJO1ZUIPO • )PQFZPVHFUJOUFSFTUFEJOJU
8IBU`T4QBSTF.PEFMJOH
4QBSTF.PEFMJOH • .PEFMJOHBQQSPBDIUPVTFTQBSTJUZ • "DUJWFEJTDVTTJPOTTUBSUFEBU • *NBHFBOBMZTJTJTXFMMLOPXOBQQMJDBUJPO
$PNNPO.-JTTVFTJOCVTJOFTT • /FFEUPFYQMBJO IPXXIZ"*HJWFTSFTVMU • /FFE NPOFZBOEPSUJNF UPDPMMFDUEBUB • /FFE
JOJUJBMDPTUGPS(16IBSEXBSF IUUQTIBDBSVTDPNJOGPSNBUJPOUFDITQBSTFNPEFMJOHGPSJUFOHJOFFST
&YQMBJOBCMFWT1SFEJDUBCMF • /PTJMWFSCVMMFUT USBEFPGGFYJTUT • 'BJMXJUIPVUUIJOLJOHCVTJOFTTSFRVJSFNFOUT • 69PG"*TZTUFNCFDPNFTJNQPSUBOU
"EWBOUBHFPG4QBSTF.PEFMJOH • 4FMFDUJNQPSUBOUGFBUVSFTGSPNJOQVU • 8PSLXJUI FWFO TNBMMBNPVOUPGEBUB • 3VOPOMJNJUFEIBSEXBSFSFTPVSDF
*OUSPEVDUJPOPG-BTTP
-JOFBSSFHSFTTJPO • 1SPCMFNEFTDSJQUJPO • 0VUQVUZ DBOCFFYQSFTTFEBTMJOFBSDPNCJOBUJPOPGY XJUIPCTFSWBUJPOOPJTFЏ • XIFSFY JTN
EJNFOTJPOBMBOETBNQMFTJ[FPGZ JTO ! = #$ %$ + ⋯ + #( %( + ) 㱺 &TUJNBUFX XIJDIFYQSFTTFT ZXFMM
-JOFBSSFHSFTTJPO • #BTJDBQQSPBDI • .JOJNJ[FMFBTUTRVBSFFSSPSTPGZ BOENVMUJQMJFSTPG Y BOEFTUJNBUFEX min 1
2 & − () * 㱺 XIBUJGXFEPO`UIBWFFOPVHITBNQMFTPGZ ʁ
6OEFSEFUFSNJOFE4ZTUFN .BUSJY&YQSFTTJPO 8IFOTBNQMFTJ[F . JTMFTTUIBO JOQVUEJNFOTJPOPG9 / Z8Y DBOOPUCFTPMWFE "EEJOHTQBSTJUZDPOTUSBJOU
*GOVNCFSPGOPO[FSPWBMVFPGY , JTMFTTUIBO. 8FDBOTPMWF UIJTQSPCMFN W W
-OPSNPQUJNJ[BUJPO • 6TFNJOJNVNOVNCFSPGY UPTBUJTGZ FRVBUJPO • 'JOEX UPNJOJNJ[FOVNCFSPGOPO[FSP FMFNFOUT •
$PNCJOBUJPOBMPQUJNJ[BUJPO • /1IBSEBOEOPUGFBTJCMFL
-OPSNPQUJNJ[BUJPO • 3FMBY-DPOTUSBJOUUP • 'JOEX UPNJOJNJ[FTVNPGJUTBCTPMVUFWBMVFT • (MPCBMTPMVUJPODBO TUJMM CFSFBDIFE
• 4PMWFEXJUIJOQSBDUJDBMUJNF
&Y7JTVBMFYQSFTTJPO -OPSN !" + !$ = &
• -FBTU"CTPMVUF4ISJOLBHFBOE4FMFDUJPO0QFSBUPS • 0CKFDUJWFGVODUJPOXJUI-OPSNBTSFHVMBSJ[BUJPO UFSN -BTTP min 1 2 &
− () * + , ( - 㱺 3FHVMBSJ[BUJPOQBSBNFUFS Е DPOUSPMT TQBSTJUZ
7BSJPVT"MHPSJUINTGPS-BTTP • $PPSEJOBUF%FTDFOU • -FBTU"OHMF3FHSFTTJPO • *45" • "%..
&Yɿ$PPSEJOBUF%FTDFOU *OJUJBMJ[F !" # = 1, … , (
XJUISBOEPNWBMVF 6QEBUF ) !" = * + , -. , / , 0 8IFSF 1(") = 4 − ∑ 78" 9 7 !7 BOES JTTPGUUISFTIPMEJOH GVODUJPO 3FQFBUVOUJMDPOWFSHJOHDPOEJUJPOTBUJTGJFE
4PGU5ISFTIPMEJOH0QFSBUPS • 4ISJOLHJWFOWBMVFYCBTFEPO! S #, ! = & # −
!, (# ≥ !) 0, (−! < # < !) # + !, (# ≤ −!)
1ZUIPODPEFFYBNQMF # Soft thresholding operator def soft_threshold(X, thresh): return np.where(np.abs(X)
<= thresh, 0, X - thresh * np.sign(X)) # Coordinate descent w_cd = np.zeros(n_features) for _ in range(n_iter): for j in range(n_features): w_cd[j] = 0.0 r_j = y - np.dot(X, w_cd) w_cd[j] = soft_threshold(np.dot(X[:, j], r_j) / n_samples, alpha)
3FTVMU EJNFOTJPOBMJOQVUXJUI OPO[FSPDPFGGJDJFOUTBOETBNQMFT
1BUIEJBHSBN • 7JTVBMFYQSFTTJPOPGIPX! BGGFDUTUIF OVNCFSPGOPO[FSPDPFGGJDJFOUT
0UIFSJNQMFNFOUBUJPOT • TDJLJUMFBSO • $PPEJOBUF %FTDFOUJTEFGBVMU -BTTP • -"34JTBMTPBWBJMBCMF -BTTP-BST
• TQNJNBHF • "%..JTBWBJMBCMF -BTTP"%..
TQNJNBHF • 1ZUIPOMJCSBSZGPSTQBSTFNPEFMJOH • "MHPSJUINTGPS*NBHFBOBMZTJT • $PNQMJBOUUPTDJLJUMFBSOJOUFSGBDF • IUUQTHJUIVCDPNIBDBSVTTQNJNBHF
&Y-BTTPBOE-BTTP"%.. # Lasso from scikit-learn from sklearn.linear_model import Lasso model
= Lasso(alpha=0.1) model.fit(X_train, Y_train) model.score(X_test, y_test) # Lasso from spm-image from spmimage.linear_model import LassoADMM model = LassoADMM(alpha=0.1) model.fit(X_train, Y_train) model.score(X_test, y_test)
*NBHFBOBMZTJT
%JDUJPOBSZMFBSOJOH :*NBHF "%JDUJPOBSZ ! "# $# 9DPFGGJDJFOU • &YUSBDUQBUDIFTGSPNJNBHFT •
-FBSOEJDUJPOBSZ UPFYQSFTTFWFSZQBUDIFT • &WFSZQBUDIFTTIPVMECFTQBSTF DPNCJOBUJPOPG CBTJT 4QBSTF$PEJOH
&Y*NBHFSFDPOTUSVDUJPO 0SJHJOBMJNBHF 3FDPOTUSVDUFEJNBHF
&Y*NBHFSFDPOTUSVDUJPO -FBSOFEEJDUJPOBSZ Y CBTJT 4QBSTF$PEJOH HSFFOJT[FSP
1ZUIPODPEFFYBNQMF # extract patches patches = extract_simple_patches_2d(img, patch_size) # normalize
patches patches = patches.reshape(patches.shape[0], -1).astype(np.float64) intercept = np.mean(patches, axis=0) patches -= intercept patches /= np.std(patches, axis=0) # dictionary learning model = MiniBatchDictionaryLearning(n_components=n_basis, alpha=1, n_iter=n_iter, n_jobs=1) model.fit(patches) # reconstruction reconstructed_patches = np.dot(code, model.components_) reconstructed_patches = reconstructed_patches.reshape(len(patches), *patch_size) reconstructed = reconstruct_from_simple_patches_2d(reconstructed_patches, img.shape)
*OQBJOUJOH 'PSNJTTJOHWBMVFT XFDPOTJEFSNBTLNBUSJY.BOE VTFJUXJUIVTVBMJNBHFSFDPOTUSVDUJPOCZEJDUJPOBSZ
4VNNBSZ
4QBSTFNPEFMJOH • "EWBOUBHFT • 4FMFDUJNQPSUBOUGFBUVSFTGSPNJOQVU • 8PSLXJUI FWFO TNBMMBNPVOUPGEBUB •
3VOPOMJNJUFEIBSEXBSFSFTPVSDF • :PVDBOTUBSUJUUPEBZJ • 1ZUIPOJNQMFNFOUBUJPOJTBWBJMBCMFJOTDJLJU MFBSOBOETQNJNBHF
! 8F`SFIJSJOH ! IUUQTXXXLBMJCSSDPNDIBDBSVTJODKPCT