Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Introduction to Sparse Modeling for Software En...
Search
Hacarus Inc.
October 13, 2018
Technology
1
120
Introduction to Sparse Modeling for Software Engineers
Presentation slides at GDG DevFest Philippines 2018
*
https://devfest.gdgph.org/
Hacarus Inc.
October 13, 2018
Tweet
Share
More Decks by Hacarus Inc.
See All by Hacarus Inc.
GitLab CI/CD で C#/WPFアプリケーションのテストとインストーラーのビルド・デプロイを自動化する
hacarus
0
1.3k
QA4AIに則ったMLOpsツールの活用
hacarus
0
710
0から協働ロボット外観検査システムを3ヵ月で具現化した軌跡
hacarus
0
260
ワンちゃんの健康を願う皆様に送る 犬心電図AI解析プロダクト紹介_AWS DevDay2022
hacarus
0
200
犬の心電AI解析プロダクト開発奮闘記 _クラウドからハード開発までてんこ盛り
hacarus
0
1.8k
ExplainableAIの概要とAmazon SageMaker Clarifyでの実装例
hacarus
0
1.1k
AWS Step Functions を用いた非同期学習処理の例
hacarus
0
1.4k
Dashでmyダッシュボードを作ろう ーpytrendsで見るコロナの感染拡大時期ー
hacarus
0
1.5k
Interpretable Machine Learning: モデル非依存な解釈手法の紹介
hacarus
0
1.1k
Other Decks in Technology
See All in Technology
広告の効果検証を題材にした因果推論の精度検証について
zozotech
PRO
0
180
プロダクト成長を支える開発基盤とスケールに伴う課題
yuu26
4
1.3k
OpenShiftでllm-dを動かそう!
jpishikawa
0
110
Contract One Engineering Unit 紹介資料
sansan33
PRO
0
13k
20260204_Midosuji_Tech
takuyay0ne
1
160
AIエージェントを開発しよう!-AgentCore活用の勘所-
yukiogawa
0
170
茨城の思い出を振り返る ~CDKのセキュリティを添えて~ / 20260201 Mitsutoshi Matsuo
shift_evolve
PRO
1
290
FinTech SREのAWSサービス活用/Leveraging AWS Services in FinTech SRE
maaaato
0
130
モダンUIでフルサーバーレスなAIエージェントをAmplifyとCDKでサクッとデプロイしよう
minorun365
4
210
ファインディの横断SREがTakumi byGMOと取り組む、セキュリティと開発スピードの両立
rvirus0817
1
1.4k
配列に見る bash と zsh の違い
kazzpapa3
1
150
SREじゃなかった僕らがenablingを通じて「SRE実践者」になるまでのリアル / SRE Kaigi 2026
aeonpeople
6
2.4k
Featured
See All Featured
Building AI with AI
inesmontani
PRO
1
690
What the history of the web can teach us about the future of AI
inesmontani
PRO
1
430
Design in an AI World
tapps
0
140
The AI Search Optimization Roadmap by Aleyda Solis
aleyda
1
5.2k
AI Search: Where Are We & What Can We Do About It?
aleyda
0
6.9k
Ecommerce SEO: The Keys for Success Now & Beyond - #SERPConf2024
aleyda
1
1.8k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.2k
Google's AI Overviews - The New Search
badams
0
910
SEO in 2025: How to Prepare for the Future of Search
ipullrank
3
3.3k
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.7k
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
技術選定の審美眼(2025年版) / Understanding the Spiral of Technologies 2025 edition
twada
PRO
117
110k
Transcript
,8 0 0 2 1 , 1 0 2 00
3 0 0 3 88 0
5BLBTIJ4PNFEB !ULTNE • $50BU)BDBSVT *OD • .BTUFS`TEFHSFFPG*OGPSNBUJPO4DJFODFBU ,ZPUP6OJWFSTJUZ • )PTUTEBUBTDJFOUJTUDPNNVOJUZJO,"/4"*
• IUUQTNMNLBOTBJDPOOQBTTDPN
"CPVU)BDBSVT • 5BDLMFNFEJDBM JOEVTUSJBMJTTVFTCZ"* • 'PDVTPO4QBSTF.PEFMJOH • 4VQQPSUFECZQSPGFTTPST • .S.BTBZVLJ0I[FLJ
GSPN5PIPLV6OJWFSTJUZ • .S,BPSV,BXBNPUPGSPN4IJHB6OJWFSTJUZ
"MJUUMFNPSFBCPVUVT
5BLFBXBZT • (FUCBTJDDPODFQUPG4QBSTF.PEFMJOH • ,OPXBDUVBMJNQMFNFOUBUJPOJO1ZUIPO • )PQFZPVHFUJOUFSFTUFEJOJU
8IBU`T4QBSTF.PEFMJOH
4QBSTF.PEFMJOH • .PEFMJOHBQQSPBDIUPVTFTQBSTJUZ • "DUJWFEJTDVTTJPOTTUBSUFEBU • *NBHFBOBMZTJTJTXFMMLOPXOBQQMJDBUJPO
$PNNPO.-JTTVFTJOCVTJOFTT • /FFEUPFYQMBJO IPXXIZ"*HJWFTSFTVMU • /FFE NPOFZBOEPSUJNF UPDPMMFDUEBUB • /FFE
JOJUJBMDPTUGPS(16IBSEXBSF IUUQTIBDBSVTDPNJOGPSNBUJPOUFDITQBSTFNPEFMJOHGPSJUFOHJOFFST
&YQMBJOBCMFWT1SFEJDUBCMF • /PTJMWFSCVMMFUT USBEFPGGFYJTUT • 'BJMXJUIPVUUIJOLJOHCVTJOFTTSFRVJSFNFOUT • 69PG"*TZTUFNCFDPNFTJNQPSUBOU
"EWBOUBHFPG4QBSTF.PEFMJOH • 4FMFDUJNQPSUBOUGFBUVSFTGSPNJOQVU • 8PSLXJUI FWFO TNBMMBNPVOUPGEBUB • 3VOPOMJNJUFEIBSEXBSFSFTPVSDF
*OUSPEVDUJPOPG-BTTP
-JOFBSSFHSFTTJPO • 1SPCMFNEFTDSJQUJPO • 0VUQVUZ DBOCFFYQSFTTFEBTMJOFBSDPNCJOBUJPOPGY XJUIPCTFSWBUJPOOPJTFЏ • XIFSFY JTN
EJNFOTJPOBMBOETBNQMFTJ[FPGZ JTO ! = #$ %$ + ⋯ + #( %( + ) 㱺 &TUJNBUFX XIJDIFYQSFTTFT ZXFMM
-JOFBSSFHSFTTJPO • #BTJDBQQSPBDI • .JOJNJ[FMFBTUTRVBSFFSSPSTPGZ BOENVMUJQMJFSTPG Y BOEFTUJNBUFEX min 1
2 & − () * 㱺 XIBUJGXFEPO`UIBWFFOPVHITBNQMFTPGZ ʁ
6OEFSEFUFSNJOFE4ZTUFN .BUSJY&YQSFTTJPO 8IFOTBNQMFTJ[F . JTMFTTUIBO JOQVUEJNFOTJPOPG9 / Z8Y DBOOPUCFTPMWFE "EEJOHTQBSTJUZDPOTUSBJOU
*GOVNCFSPGOPO[FSPWBMVFPGY , JTMFTTUIBO. 8FDBOTPMWF UIJTQSPCMFN W W
-OPSNPQUJNJ[BUJPO • 6TFNJOJNVNOVNCFSPGY UPTBUJTGZ FRVBUJPO • 'JOEX UPNJOJNJ[FOVNCFSPGOPO[FSP FMFNFOUT •
$PNCJOBUJPOBMPQUJNJ[BUJPO • /1IBSEBOEOPUGFBTJCMFL
-OPSNPQUJNJ[BUJPO • 3FMBY-DPOTUSBJOUUP • 'JOEX UPNJOJNJ[FTVNPGJUTBCTPMVUFWBMVFT • (MPCBMTPMVUJPODBO TUJMM CFSFBDIFE
• 4PMWFEXJUIJOQSBDUJDBMUJNF
&Y7JTVBMFYQSFTTJPO -OPSN !" + !$ = &
• -FBTU"CTPMVUF4ISJOLBHFBOE4FMFDUJPO0QFSBUPS • 0CKFDUJWFGVODUJPOXJUI-OPSNBTSFHVMBSJ[BUJPO UFSN -BTTP min 1 2 &
− () * + , ( - 㱺 3FHVMBSJ[BUJPOQBSBNFUFS Е DPOUSPMT TQBSTJUZ
7BSJPVT"MHPSJUINTGPS-BTTP • $PPSEJOBUF%FTDFOU • -FBTU"OHMF3FHSFTTJPO • *45" • "%..
&Yɿ$PPSEJOBUF%FTDFOU *OJUJBMJ[F !" # = 1, … , (
XJUISBOEPNWBMVF 6QEBUF ) !" = * + , -. , / , 0 8IFSF 1(") = 4 − ∑ 78" 9 7 !7 BOES JTTPGUUISFTIPMEJOH GVODUJPO 3FQFBUVOUJMDPOWFSHJOHDPOEJUJPOTBUJTGJFE
4PGU5ISFTIPMEJOH0QFSBUPS • 4ISJOLHJWFOWBMVFYCBTFEPO! S #, ! = & # −
!, (# ≥ !) 0, (−! < # < !) # + !, (# ≤ −!)
1ZUIPODPEFFYBNQMF # Soft thresholding operator def soft_threshold(X, thresh): return np.where(np.abs(X)
<= thresh, 0, X - thresh * np.sign(X)) # Coordinate descent w_cd = np.zeros(n_features) for _ in range(n_iter): for j in range(n_features): w_cd[j] = 0.0 r_j = y - np.dot(X, w_cd) w_cd[j] = soft_threshold(np.dot(X[:, j], r_j) / n_samples, alpha)
3FTVMU EJNFOTJPOBMJOQVUXJUI OPO[FSPDPFGGJDJFOUTBOETBNQMFT
1BUIEJBHSBN • 7JTVBMFYQSFTTJPOPGIPX! BGGFDUTUIF OVNCFSPGOPO[FSPDPFGGJDJFOUT
0UIFSJNQMFNFOUBUJPOT • TDJLJUMFBSO • $PPEJOBUF %FTDFOUJTEFGBVMU -BTTP • -"34JTBMTPBWBJMBCMF -BTTP-BST
• TQNJNBHF • "%..JTBWBJMBCMF -BTTP"%..
TQNJNBHF • 1ZUIPOMJCSBSZGPSTQBSTFNPEFMJOH • "MHPSJUINTGPS*NBHFBOBMZTJT • $PNQMJBOUUPTDJLJUMFBSOJOUFSGBDF • IUUQTHJUIVCDPNIBDBSVTTQNJNBHF
&Y-BTTPBOE-BTTP"%.. # Lasso from scikit-learn from sklearn.linear_model import Lasso model
= Lasso(alpha=0.1) model.fit(X_train, Y_train) model.score(X_test, y_test) # Lasso from spm-image from spmimage.linear_model import LassoADMM model = LassoADMM(alpha=0.1) model.fit(X_train, Y_train) model.score(X_test, y_test)
*NBHFBOBMZTJT
%JDUJPOBSZMFBSOJOH :*NBHF "%JDUJPOBSZ ! "# $# 9DPFGGJDJFOU • &YUSBDUQBUDIFTGSPNJNBHFT •
-FBSOEJDUJPOBSZ UPFYQSFTTFWFSZQBUDIFT • &WFSZQBUDIFTTIPVMECFTQBSTF DPNCJOBUJPOPG CBTJT 4QBSTF$PEJOH
&Y*NBHFSFDPOTUSVDUJPO 0SJHJOBMJNBHF 3FDPOTUSVDUFEJNBHF
&Y*NBHFSFDPOTUSVDUJPO -FBSOFEEJDUJPOBSZ Y CBTJT 4QBSTF$PEJOH HSFFOJT[FSP
1ZUIPODPEFFYBNQMF # extract patches patches = extract_simple_patches_2d(img, patch_size) # normalize
patches patches = patches.reshape(patches.shape[0], -1).astype(np.float64) intercept = np.mean(patches, axis=0) patches -= intercept patches /= np.std(patches, axis=0) # dictionary learning model = MiniBatchDictionaryLearning(n_components=n_basis, alpha=1, n_iter=n_iter, n_jobs=1) model.fit(patches) # reconstruction reconstructed_patches = np.dot(code, model.components_) reconstructed_patches = reconstructed_patches.reshape(len(patches), *patch_size) reconstructed = reconstruct_from_simple_patches_2d(reconstructed_patches, img.shape)
*OQBJOUJOH 'PSNJTTJOHWBMVFT XFDPOTJEFSNBTLNBUSJY.BOE VTFJUXJUIVTVBMJNBHFSFDPOTUSVDUJPOCZEJDUJPOBSZ
4VNNBSZ
4QBSTFNPEFMJOH • "EWBOUBHFT • 4FMFDUJNQPSUBOUGFBUVSFTGSPNJOQVU • 8PSLXJUI FWFO TNBMMBNPVOUPGEBUB •
3VOPOMJNJUFEIBSEXBSFSFTPVSDF • :PVDBOTUBSUJUUPEBZJ • 1ZUIPOJNQMFNFOUBUJPOJTBWBJMBCMFJOTDJLJU MFBSOBOETQNJNBHF
! 8F`SFIJSJOH ! IUUQTXXXLBMJCSSDPNDIBDBSVTJODKPCT