Upgrade to Pro — share decks privately, control downloads, hide ads and more …

不確実性と上手く付き合う意思決定の手法

Sponsored · Your Podcast. Everywhere. Effortlessly. Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.

 不確実性と上手く付き合う意思決定の手法

予測モデルの不確実性を減らすActive Learning,
モデルの不確実性を予測結果に反映するThompson Sampling,
オンライン最適化など

Avatar for Takashi Nishibayashi

Takashi Nishibayashi

April 04, 2019
Tweet

More Decks by Takashi Nishibayashi

Other Decks in Technology

Transcript

  1. ͓લͩΕΑ Name: Takashi Nishibayashi twitter.com/@hagino3000 Job: Software Engineer VOYAGE GROUPͰωοτ޿ࠂ഑৴αʔϏε࡞ͬͯ

    ·͢ɻओʹ഑৴ϩδοΫ͔Βσʔλ෼ੳج൫·Ͱɻ
 ࠷ۙͷڵຯ͸ΦϯϥΠϯҙࢥܾఆͱϝΧχζϜσβ Πϯɻ  
  2. ࠷ۙͷ׆ಈ ਓ޻஌ೳֶձࢽ Vol. 32 No. 4 (2017/07) ͷʮ޿ࠂͱ AI ಛूʯʹʮΞυωοτϫʔΫʹ͓͚Δ޿ࠂ഑৴ܭ

    ըͷ࠷దԽʯ͕ܝࡌ͞Ε·ͨ͠ɻ   ΦϥΠϦʔ͔Βʮ࢓ࣄͰ͸͡ΊΔػցֶशʯ͕ग़· ͨ͠ɻ @chezou, @tokorotenͱڞஶ ࢴ൛ɾిࢠॻ੶྆ํ͋Γ·͢
  3. ࠓ೔ͷ࿩ w ༧ଌγεςϜͱҙࢥܾఆ w Ϗδωεʹ͓͚Δ࠷దԽ w ϥϕϧແ͠σʔλͷ୳ࠪ w ༧ଌϞσϧͷෆ͔֬͞Λߦಈʹ൓ө͢Δ w

    ΦϯϥΠϯ࠷దԽ ػցֶशͰಘͨ༧ଌ஋ΛͲͷΑ͏ʹͯ͠࢖͏͔ɺ༧ଌͷ࣍ͷҙࢥܾ ఆͷϑΣʔζʹ஫໨͠·͢ɻ࣮ࡍͷΞϓϦέʔγϣϯ΋঺հͭͭ͠ ࿩ΛਐΊ·͢ɻ
  4. ༧ଌͱҙࢥܾఆͷྫ ༧ଌλεΫ ҙࢥܾఆ ԿͷͨΊʹ धཁ༧ଌ ੜ࢈ܭը ҆શࡏݿ֬อɾࡏݿίετ࡟ݮ ނোՕॴͷ༧ଌ ϝϯςφϯεܭը ϝϯςφϯεඅ༻࡟ݮ

    Ձ஋ͷ༧ଌ ചΓ஋ങ͍஋ͷܾఆ औҾ͕ੜΉརӹͷ࠷େԽ ޿ࠂޮՌͷਪఆ ޿ࠂΛදࣔ͢΂͖͔Ͳ͏͔ ༧ࢉ಺Ͱͷ޿ࠂޮՌ࠷େԽ Ͱ͖Ε͹ࣗಈͰܾΊ͍ͨɺͰ͸Ͳ͏͢Ε͹  Ή͠ΖΞϓϦέʔγϣϯΤϯδχΞͷ࢓ࣄ͸ࣗಈԽ͕ϝΠϯ
  5. ༧ଌΛར༻ͨ͠࠷దԽ ੡඼9 ੡඼: ੡඼; ݸ౰ͨΓͷརӹ ԁ  ʙ  ݸ͋ͨΓͷ੡଄ॴ༻࣌ؒ

    ෼ ʙ ݄ؒधཁ࠷্ݶ   ࣮ࡍʹ࡞ͬͨΓചͬͯΈΔ·ͰΘ͔Βͳ͍෦෼ ༧ଌΛར༻͍ͯ͠Δ࣌఺ͰɺԿΒ͔ͷෆ࣮֬ੑΛ಺แ͍ͯ͠Δ ͦΕͳΓʹ༧ଌͰ͖Δ෦෼ ͜Μͳঢ়ଶ͔Βελʔτ͢Δʹ͸Ͳ͏ͨ͠Β͍͍͔
  6. ༨ஊ࠷దͱ͸Կ͔ w ඇࣗ໌Ͱ͋Δࣄ͕ଟ͍ͱײ͡Δ w ࠗ׆ϚονϯάΞϓϦ w Ϛονϯά͕଎͗͢Δͱࢢ৔͕ബ͘ͳΔδϨϯϚ w ࢓ೖΕՁ֨ w

    ʮ࢓ೖΕՁ֨Λ্͍͛ͨʯʮརӹ૬൓Ͱ͸ ʯ w ࢓ೖΕ஋ʹϚʔδϯ ཰ Λ৐ͤͯച͍ͬͯͨˠ࢓ೖΕ஋্͕͕Δͱૈར૿ w ஋෇͚ϧʔϧΛม͑Δॴ͔Β΍ͬͨ w ۀ຿ͦͷ΋ͷΛม͑ΒΕΔ༨஍͕ͲΕ͚ͩ͋Δ͔
  7. 5IF4FBSDIGPS-FBE1JQFT JO'MJOU .JDIJHBO<> w Ԗڅਫ؅ -FBE1JQFT ͷަ׵Λ͢ΔͨΊʹػցֶश༧ଌϞσϧΛར༻ͨ͠ࣄྫ w ,%%ʹ࠾୒͞Εͨ࿦จʹख๏͕ࡌ͍ͬͯΔ w

    എܠ w Ԗڅਫ؅͸Ԗ༹͕ग़͠ͳ͍Α͏ʹද໘͕ίʔςΟϯά͞Ε͍ͯΔ w 'MJOUࢢʹ͓͍ͯ͸ਫݯΛม͑ͨ࣌ʹਫ࣭͕มΘͬͯίʔςΟϯά͕ണ͛ͨ w ਫಓਫ΁ͷԖͷ༹ग़ʹΑΔ݈߁ඃ֐͕ൃੜ w ߦ੓ͷه࿥͸ෆਖ਼֬
  8. 5IF4FBSDIGPS-FBE1JQFT JO'MJOU .JDIJHBO ଓ͖ w ௐࠪϙΠϯτܾఆϧʔϧ w ৘ใΛऔಘͯ͠༧ଌੑೳΛ্͛Δͷ͕໨త w ೳಈֶश

    "DUJWF-FBSOJOH  w ύΠϓަ׵ϙΠϯτܾఆϧʔϧ w ޡ۷࡟ίετΛ࠷খԽ͍ͨ͠ w ࠷΋֬཰ͷߴ͍ϙΠϯτΛબͿɺᩦཉ๏ (SFFEZ"MHPSJUIN
  9. ೳಈֶश "DUJWF-FBSOJOH w എܠ w ڭࢣ͋Γֶश͸܇࿅σʔλ͕ଟ͍ఔਫ਼౓্͕͕Δ w ͨͩ͠ϥϕϧ෇͚ Ξϊςʔγϣϯ ʹίετ͕͔͔Δ

    w Ξϓϩʔν w ༧ଌثͷਫ਼౓޲্ʹد༩͢ΔσʔλΛ౎౓બͿ w ํࡦͷྫ࠷΋ෆ͔֬ͳσʔλΛબ୒͢Δ w 'MJOUͰ͸*NQPSUBODF8FJHIUFE"DUJWF-FBOJOHΛ࠾༻
  10. ͞ΒͳΔࠔ೉ w ࢪࡦͷධՁ͸ύΠϓަ׵݅͋ͨΓͷίετ࡟ݮྔ w  ˠ  w .ͷઅ໿ w

    ੒Ռ͸ग़ͨ΋ͷͷࢢຽ͕൓ൃ w ਓؒͷ໋Λٹ͏͸ͣͩͬͨ"*͕੓࣏ͱແ஌ʹΑͬͯແࢹ͞Εͯ͠·ͬͨ࿩
 IUUQTOPUFNVEBUBTDJFODFOOEFCEEBGF w ΞϧΰϦζϜΛݟΕ͹Θ͔Δ௨Γɺे෼ͳ༧ࢉ͕͋Ε͹શॅ୐Λ۷Γฦ͠ ͯݕࠪ͢ΔࣄʹͳΔɻௐࠪ͢Δॱ൪͕ૣ͍͔஗͍͔ͷҧ͍ɻ w ࠷దͱ͸ҰମԿͳͷ͔
  11. ྦྷੵใुΛ࠷େԽ͍ͨ͠ ࢼߦճ਺ ͋ͨΓճ਺ Q ㅟ εϩοτϚγϯ"    εϩοτϚγϯ#

       ֬཰QͰ౰ͨΓ͕ग़ΔϕϧψʔΠࢼߦΛߟ͑Δɺ͜ͷޙ͸Ͳ͏͢΂͖͔ ෳ਺͋Δબ୒ࢶͦΕͧΕ͔Β֬཰త JJE ʹใु͕ಘΒΕΔઃఆͰγʔέϯγϟϧʹ ߦಈΛܾΊͯྦྷੵใु࠷େԽΛ໨ࢦ͢໰୊Λʮ֬཰తόϯσΟοτ໰୊ʯɺ͜ͷ࣌ ͷબ୒ࢶΛʮΞʔϜʯͱݺͿɻ
  12. ֬཰తόϯσΟοτ໰୊ͷํࡦ w ֬཰Ұக๏ w ΞʔϜa ͷظ଴஋͕࠷େͰ͋Δ֬཰ͰaΛબ୒͢Δ w ͲͷΑ͏ʹ  w

    ϥ΢ϯυຖʹ w ΞʔϜͦΕͧΕͷظ଴஋ͷࣄޙ෼෍͔ΒЖaΛੜ੒ ㅟ w Жa ͕࠷େͷΞʔϜΛબ୒͢Δ ㅟ w ݁Ռͷ؍ଌΛͯ͠બ୒ͨ͠ΞʔϜͷه࿥Λߋ৽ w 㱺5IPNQTPO4BNQMJOH
  13. Results: Ordinary least squares ================================================================== Model: OLS Adj. R-squared: 0.946

    Dependent Variable: y AIC: 3196.9303 Date: 2019-04-04 00:32 BIC: 3230.7426 No. Observations: 506 Log-Likelihood: -1590.5 Df Model: 8 F-statistic: 1110. Df Residuals: 498 Prob (F-statistic): 8.68e-312 R-squared: 0.947 Scale: 31.960 -------------------------------------------------------------------- Coef. Std.Err. t P>|t| [0.025 0.975] -------------------------------------------------------------------- CRIM -0.1858 0.0380 -4.8884 0.0000 -0.2605 -0.1111 ZN 0.0833 0.0146 5.7100 0.0000 0.0546 0.1119 CHAS 3.8725 1.0130 3.8227 0.0001 1.8821 5.8629 NOX -18.5928 3.0070 -6.1833 0.0000 -24.5007 -12.6849 RM 6.8287 0.2539 26.8931 0.0000 6.3298 7.3276 DIS -1.3713 0.1736 -7.8985 0.0000 -1.7124 -1.0302 RAD 0.2022 0.0711 2.8420 0.0047 0.0624 0.3420 TAX -0.0180 0.0038 -4.7172 0.0000 -0.0255 -0.0105 ------------------------------------------------------------------ ྫ#PTUPOෆಈ࢈Ձ֨σʔλͷઢܗճؼ ஫#PTUPOIPVTFQSJDFTEBUBTFUΛલॲཧແ͠Ͱ0-4ͨ݁͠Ռ
  14. *ODSFNFOUBMJUZ#JEEJOH"UUSJCVUJPO<> w /FUqJYͷਓͷ35#ೖࡳઓུ w 35#޿ࠂදࣔݖརͷϦΞϧλΠϜΦʔΫγϣϯ w ޿ࠂͷҼՌޮՌ͕࠷େʹͳΔೖࡳΛ͍ͨ͠ w ༧ଌ͸ೖࡳϦΫΤετຖ ԯճEBZ

     w ༧ଌͷෆ͔֬͞Λදݱ͢ΔͷʹύϥϝʔλΛࣄޙ෼෍͔Βੜ੒ w ಺༰੝Γ΋Γͷ8PSLJOH1BQFSͰݟॴ͕ଟ͍ w ޿ࠂͷϥϯμϜԽൺֱࢼݧ (IPTU"ET ɺޮՌͷݮਰϞσϧ
  15. ࢀߟจݙ <>"CFSOFUIZ +BDPC FUBM"DUJWF3FNFEJBUJPO5IF4FBSDIGPS-FBE 1JQFTJO'MJOU .JDIJHBO1SPDFFEJOHTPGUIFUI"$.4*(,%% *OUFSOBUJPOBM$POGFSFODFPO,OPXMFEHF%JTDPWFSZ%BUB.JOJOH"$.   <>"HSBXBM

    4IJQSB BOE/BWJO(PZBM'VSUIFSPQUJNBMSFHSFUCPVOETGPS UIPNQTPOTBNQMJOH"SUJpDJBMJOUFMMJHFODFBOETUBUJTUJDT <>ຊଟ३໵ BOEதଜಞ঵όϯσΟοτ໰୊ͷཧ࿦ͱΞϧΰϦζϜߨஊࣾ   <>"HSBXBM 4IJQSB BOE/BWJO(PZBM5IPNQTPOTBNQMJOHGPSDPOUFYUVBM CBOEJUTXJUIMJOFBSQBZP⒎T*OUFSOBUJPOBM$POGFSFODFPO.BDIJOF -FBSOJOH
  16. ࢀߟจݙ <>-FXJT 3BOEBMM" BOE+F⒎SFZ8POH*ODSFNFOUBMJUZ#JEEJOH "UUSJCVUJPO   <>$.Ϗγϣοϓʢஶʣݩాߒɼ܀ాଟت෉ɼṤޱ஌೭ɼদຊ༟࣏ɼଜాঢ ʢ༁ʣύλʔϯೝࣝͱػցֶशʢ্ʣɿϕΠζཧ࿦ʹΑΔ౷ܭత༧ଌ <>ଜాঢ৘ใཧ࿦ͷجૅ৘ใͱֶशͷ௚؍తཧղͷͨΊʹαΠΤϯεࣾ

      <>)B[BO &MBE*OUSPEVDUJPOUPPOMJOFDPOWFYPQUJNJ[BUJPO'PVOEBUJPOT BOE5SFOETšJO0QUJNJ[BUJPO   <>:V )BP .JDIBFM/FFMZ BOE9JBPIBO8FJ0OMJOFDPOWFYPQUJNJ[BUJPO XJUITUPDIBTUJDDPOTUSBJOUT"EWBODFTJO/FVSBM*OGPSNBUJPO1SPDFTTJOH 4ZTUFNT