$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
【論文紹介】Sparse Embedded k-means Clustering
Search
Shuhei Goda
January 21, 2018
Technology
0
350
【論文紹介】Sparse Embedded k-means Clustering
Shuhei Goda
January 21, 2018
Tweet
Share
More Decks by Shuhei Goda
See All by Shuhei Goda
Turing × atmaCup #18 - 1st Place Solution
hakubishin3
0
1.1k
ジョブマッチングサービスにおける相互推薦システムの応用事例と課題
hakubishin3
3
1.1k
とある事業会社にとっての Kaggler の魅力
hakubishin3
9
3k
課題の解像度が荒かったことで意図した改善ができなかった話
hakubishin3
3
1.1k
Wantedly におけるマッチング体験を最大化させるための推薦システム
hakubishin3
4
1.3k
Recommendation Industry Talks #1 Opening
hakubishin3
1
430
会社訪問アプリ「Wantedly Visit」での シゴトに関する興味選択機能と推薦改善
hakubishin3
0
700
論文紹介: Improving Implicit Feedback-Based Recommendation through Multi-Behavior Alignment(Xin Xin et al., 2023)
hakubishin3
0
680
Feedback Prize - English Language Learning における擬似ラベルの品質向上の取り組み
hakubishin3
0
1.1k
Other Decks in Technology
See All in Technology
Karate+Database RiderによるAPI自動テスト導入工数をCline+GitLab MCPを使って2割削減を目指す! / 20251206 Kazuki Takahashi
shift_evolve
PRO
1
700
MapKitとオープンデータで実現する地図情報の拡張と可視化
zozotech
PRO
1
140
AWSを使う上で最低限知っておきたいセキュリティ研修を社内で実施した話 ~みんなでやるセキュリティ~
maimyyym
2
310
「Managed Instances」と「durable functions」で広がるAWS Lambdaのユースケース
lamaglama39
0
300
SSO方式とJumpアカウント方式の比較と設計方針
yuobayashi
7
600
ブロックテーマとこれからの WordPress サイト制作 / Toyama WordPress Meetup Vol.81
torounit
0
550
生成AI時代におけるグローバル戦略思考
taka_aki
0
130
Playwright x GitHub Actionsで実現する「レビューしやすい」E2Eテストレポート
kinosuke01
0
570
WordPress は終わったのか ~今のWordPress の制作手法ってなにがあんねん?~ / Is WordPress Over? How We Build with WordPress Today
tbshiki
1
700
生成AI活用の型ハンズオン〜顧客課題起点で設計する7つのステップ
yushin_n
0
130
世界最速級 memcached 互換サーバー作った
yasukata
0
340
形式手法特論:CEGAR を用いたモデル検査の状態空間削減 #kernelvm / Kernel VM Study Hokuriku Part 8
ytaka23
2
460
Featured
See All Featured
Stop Working from a Prison Cell
hatefulcrawdad
273
21k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.2k
How to Think Like a Performance Engineer
csswizardry
28
2.4k
Being A Developer After 40
akosma
91
590k
Building a Scalable Design System with Sketch
lauravandoore
463
34k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.7k
Building Adaptive Systems
keathley
44
2.9k
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
3k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.8k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Transcript
Sparse Embedded k-Means Clustering 2018/01/21 マジ卍論文読み会
概要 l 背景 ü K-meansクラスタリングは、高次元データに対して計算コストが高い。 ü 先行研究では、Random ProjectionやSVDなどの線形次元削減による 手法を用いて計算コストの改善を行っているが、それでも、 程度 の計算コストが生じている。
l 本論文の手法 ü Random Projectionで用いる写像行列にスパース行列を採用して、 高速な行列演算を実行することで、計算コストを に抑える。 l 結論 ü 本論文の手法は、先行研究の手法に比べて、十分なクラスタリング精度 を達成しつつ、計算時間を大幅に短縮している。 1 ) (nd O )) ( ( X nnz O
k平均法の計算コスト削減を目的とした先行手法 l SVDやRandom Projectionを使用した、データ行列の次元削減 ü state-of-the-artなRPでも、 の計算量と (2+ε)の精度 2
) log( 2 d ndk O
本手法の概要 l Sparse Embedded k-Means Clustering ü RPの写像行列にスパース行列を採用することで、RPの計算量を にする。
ü 埋め込み次元が である場合、信頼度 で、クラスタリングの最適解への近似精度が(1+ε)となる。 3 )) 6 , ) / 1 log( (max( 2 2 k O ) ( 1 O )) ( ( X nnz O
Sparse Embedding Algorithm 4 ランダム直交行列の作成 )) ( ( X
nnz O
ε-Approximation Embedded Matrix 5 k-Means Clusteringの目的は (1)式を満たす計画行列Dを得ること
ε-Approximation Embedded Matrix 6 元データXのクラスタリング精度に対して(1±ε)の誤差を持つような、 埋め込み後のデータ行列X^ を扱う
ε-Approximation Embedded Matrix 7 γとは、埋め込み後の データ行列X^に対する 計画行列D^が、最適解D^*に どの程度近いかを表す指標 D^がX^に対する最適解(γ=1)であるならば、
D^はデータ行列Xに対して精度(1+ε)を保証する
ε-Approximation Embedded Matrix l まとめると ü ε近似解(2)式を満たすような次元削減後のデータ行列X^があり、 ü D^がX^に対する最適解である(γ=1)ならば、 ü
D^はデータ行列Xに対して精度(1+ε)を保証する。 8
Sparse Embedding Matrix ≈ ε-Approximation Embedded Matrix 9 埋め込み次元の大きさに制約をかけることで、
ランダム直交行列R=(QΦ)'を使った埋め込み行列X^=XR'は、 1-O(δ)の確率で(2)式の条件を満たす。(証明は3章)
実験結果 10 ・クラスタリング精度 ・次元削減の計算時間