Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ジョブマッチングサービスにおける相互推薦システムの応用事例と課題
Search
Shuhei Goda
November 07, 2024
Technology
3
1.1k
ジョブマッチングサービスにおける相互推薦システムの応用事例と課題
第27回情報論的学習理論ワークショップ (IBIS2024)
企画セッション3:ビジネスと機械学習
https://ibisml.org/ibis2024/os/
Shuhei Goda
November 07, 2024
Tweet
Share
More Decks by Shuhei Goda
See All by Shuhei Goda
Turing × atmaCup #18 - 1st Place Solution
hakubishin3
0
1.2k
とある事業会社にとっての Kaggler の魅力
hakubishin3
9
3.1k
課題の解像度が荒かったことで意図した改善ができなかった話
hakubishin3
3
1.1k
Wantedly におけるマッチング体験を最大化させるための推薦システム
hakubishin3
4
1.3k
Recommendation Industry Talks #1 Opening
hakubishin3
1
440
会社訪問アプリ「Wantedly Visit」での シゴトに関する興味選択機能と推薦改善
hakubishin3
0
710
論文紹介: Improving Implicit Feedback-Based Recommendation through Multi-Behavior Alignment(Xin Xin et al., 2023)
hakubishin3
0
690
Feedback Prize - English Language Learning における擬似ラベルの品質向上の取り組み
hakubishin3
1
1.1k
ウォンテッドリーにおける推薦システムのオフライン評価の仕組み
hakubishin3
7
7.3k
Other Decks in Technology
See All in Technology
あの夜、私たちは「人間」に戻った。 ── 災害ユートピア、贈与、そしてアジャイルの再構築 / 20260108 Hiromitsu Akiba
shift_evolve
PRO
0
510
Contract One Engineering Unit 紹介資料
sansan33
PRO
0
12k
チームで安全にClaude Codeを利用するためのプラクティス / team-claude-code-practices
tomoki10
6
3.1k
1万人を変え日本を変える!!多層構造型ふりかえりの大規模組織変革 / 20260108 Kazuki Mori
shift_evolve
PRO
6
1.1k
たかがボタン、されどボタン ~button要素から深ぼるボタンUIの定義について~ / BuriKaigi 2026
yamanoku
1
110
2025年 山梨の技術コミュニティを振り返る
yuukis
0
150
松尾研LLM講座2025 応用編Day3「軽量化」 講義資料
aratako
15
4.9k
サラリーマンソフトウェアエンジニアのキャリア
yuheinakasaka
33
16k
Data Hubグループ 紹介資料
sansan33
PRO
0
2.6k
AI との良い付き合い方を僕らは誰も知らない (WSS 2026 静岡版)
asei
1
270
産業的変化も組織的変化も乗り越えられるチームへの成長 〜チームの変化から見出す明るい未来〜
kakehashi
PRO
1
420
「リリースファースト」の実感を届けるには 〜停滞するチームに変化を起こすアプローチ〜 #RSGT2026
kintotechdev
0
740
Featured
See All Featured
Information Architects: The Missing Link in Design Systems
soysaucechin
0
730
Test your architecture with Archunit
thirion
1
2.1k
How to Think Like a Performance Engineer
csswizardry
28
2.4k
How People are Using Generative and Agentic AI to Supercharge Their Products, Projects, Services and Value Streams Today
helenjbeal
1
96
Technical Leadership for Architectural Decision Making
baasie
0
200
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.2k
Making Projects Easy
brettharned
120
6.5k
Facilitating Awesome Meetings
lara
57
6.7k
Organizational Design Perspectives: An Ontology of Organizational Design Elements
kimpetersen
PRO
0
51
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
Build The Right Thing And Hit Your Dates
maggiecrowley
38
3k
Primal Persuasion: How to Engage the Brain for Learning That Lasts
tmiket
0
200
Transcript
© 2024 Wantedly, Inc. δϣϒϚονϯάαʔϏεʹ͓͚Δ ૬ޓਪનγεςϜͷԠ༻ࣄྫͱ՝ Nov. 7 2024
- Shuhei Goda ୈ27ճใతֶशཧϫʔΫγϣοϓ (IBIS2024) اըηογϣϯ3ɿϏδωεͱػցֶश
© 2024 Wantedly, Inc. ໊લɿ ߹ా पฏ Shuhei Goda
ॴଐͱׂɿ ΥϯςουϦʔגࣜձࣾ ɾData Team Manager ɾMachine Learning Tech Lead ɾProduct Manager Kaggle Tierɿ Kaggle Competitions Grandmaster @jy_msc ࣗݾհ https://www.kaggle.com/shuheigoda
©2024 Wantedly, Inc. ڀۃͷదࡐదॴʹΑΓɺ γΰτͰίίϩΦυϧͻͱΛ;͢ ࢲͨͪͷϛογϣϯ ©2024 Wantedly, Inc.
© 2024 Wantedly, Inc. iOS, Android and Web ؾܰʹձࣾ๚ ϛογϣϯՁ؍ͷڞײͰϚονϯά
• څ༩རްੜͳͲͷ݅Ͱͳ͘ɺ͍͕͋Εձࣾͷ نʹͱΒΘΕͳ͍ ·ͣʮΛฉ͖ʹߦ͘ʯͱ͍͏৽͍͠ମݧ • ݸਓͱاۀ͕ϑϥοτͳઢͰग़ձ͑Δ͜ͱͰɺΑΓັྗ తͳॴΛݟ͚ͭΔ͜ͱ͕Մೳʹ ձࣾ๚ΞϓϦʮWantedly Visitʯ
© 2024 Wantedly, Inc. తΛୡ͢ΔͨΊʹɺ֤ొਓҎԼͷΑ͏ʹߦಈ͢Δ αʔϏεΛར༻͢Δਓͷతͱߦಈ ొਓ αʔϏεΛར༻͢Δత Ϣʔβʔ
ઓతͰΓ͕͍ͷ͋Δࣄʹͭ͘ اۀ ࣗࣾͰ׆༂Ͱ͖ΔਓࡐΛ࠾༻͢Δ ࣗͷίϯςϯπ Λ࡞͢Δ ૬खͷίϯςϯπ ΛӾཡ͢Δ ૬खʹ໘ஊͷػձ Λਃ͠ࠐΉ
© 2024 Wantedly, Inc. ϓϥοτϑΥʔϜߏʢίϯςϯπʣ Ϣʔβʔ ձࣾһ ෭ۀ ϑϦʔϥϯε ֶੜ
اۀ ܦӦ ࣾһ ਓࣄ Wantedly Visit ϓϩϑΟʔϧ ࡞ Ӿཡ ձࣾϖʔδɾืू ࡞ Ӿཡ
© 2024 Wantedly, Inc. ϓϥοτϑΥʔϜߏʢϚονϯάʣ Ϣʔβʔ ձࣾһ ෭ۀ ϑϦʔϥϯε ֶੜ
اۀ ܦӦ ࣾһ ਓࣄ Wantedly Visit Ԡื Λฉ͍ͯΈ͍ͨͰ͢ ͥͻ͓͠·͠ΐ͏ʂ εΧτ ͓͠·ͤΜ͔ʁ ͓Λฉ͔͍ͤͯͩ͘͞
© 2024 Wantedly, Inc. ϓϥοτϑΥʔϜͷϞσϧʢུ֓ʣ ܧଓɾ෮ؼ ܧଓɾ෮ؼ Ԡื εΧτ ྲྀೖ
৽ن • 2-sided marketplaceͰ͋ΓɺاۀͱϢʔβʔͷ྆ํ͕υϥΠόʔ • ྑ࣭ͳίϯςϯπͷੵɺΓͳ͍Ϛονϯάʢޭମݧʣ͕ॏཁ
© 2024 Wantedly, Inc. ϓϥοτϑΥʔϜͷ՝ - ͷϘτϧωοΫԿ͔ 20248݄ظͷొͱਪҠ 403ສਓ 4.1ສࣾ
ෳࡶͷ૿ՃͱͦΕʹ͏ϚονϯάޮͷԼ Ϣʔβʔ૿Ճʹ͏՝ • ෳࡶͷ૿Ճ→ϚονϯάޮͷԼ →Ϛονϯά૿ՃͷಷԽ→ͷఀϦεΫ Ϛονϯάޮ ͷԼ Ϣʔβʔ Ϛονϯάޮ
© 2024 Wantedly, Inc. ϓϥοτϑΥʔϜͷʹඞཁͳऔΓΈ Ϣʔβʔ Ϛονϯάޮ Ϣʔβʔ Ϛονϯάޮ Ϛονϯάޮ
Ϛονϯάޮ Ϛονϯάޮ͕ߴ͘ҡ࣋͞ΕΔঢ়ଶΛ࡞Γ αʔϏεશମͷ࣋ଓతͳΛ࣮ݱ͢Δ Before After
© 2024 Wantedly, Inc. Ϛονϯάޮ͕ߴ͘ҡ࣋͞ΕΔঢ়ଶΛͲ͏࣮ݱ͢Δ͔ p(match = 1|c, j) =
p(exam = 1|c, j) × p(scout = 1|c, j, exam = 1) × p(reply = 1|c, j, scout = 1) اۀͲͷϢʔβʔΛ ݟΔ͔ اۀʹͱͬͯͦͷϢʔβʔ ັྗతʹײ͡ΒΕΔ͔ Ϣʔβʔʹͱͬͯͦͷืू ັྗతʹײ͡ΒΕΔ͔ ਪનγεςϜͰϢʔβʔɾاۀํͷίϯςϯπͷදࣔΛ੍ޚ͢Δ • To اۀɿاۀʹͱͬͯັྗతͰɺͦͷاۀͱϚονϯά͍͢͠ϢʔβʔΛදࣔ • To ϢʔβʔɿϢʔβʔʹͱͬͯັྗతͰɺͦͷϢʔβʔͱϚονϯά͍͢͠ืूΛදࣔ j … Job seeker c … Company ͜͜ʹհೖ͢Δ p(match = 1| j, c) = p(exam = 1| j, c) × p(apply = 1| j, c, exam = 1) × p(reply = 1| j, c, apply = 1) ϢʔβʔͲͷاۀΛ ݟΔ͔ Ϣʔβʔʹͱͬͯͦͷืू ັྗతʹײ͡ΒΕΔ͔ اۀʹͱͬͯͦͷϢʔβʔ ັྗతʹײ͡ΒΕΔ͔ εΧτ༝དྷ ͷϚονϯά֬ Ԡื༝དྷ ͷϚονϯά֬
© 2024 Wantedly, Inc. ղ͖͘ػցֶशλεΫ Ϛονϯά͕࠷େͱͳΔΑ͏ͳਪનϦετΛ֤ඃਪનऀʹରͯ͠࡞͢ΔλεΫ σ* c := argsortj∈
𝒥 m(c, j) σ* j := argsortc∈ 𝒞 m(c, j) →֤اۀ c ʹͱͬͯཧతͳϥϯΩϯάɺ m(c, j)ਅͷϚονϯά֬ →֤Ϣʔβʔ j ʹͱͬͯཧతͳϥϯΩϯά • ཧతͳϥϯΩϯάਅͷϚονϯά֬ʹґଘ͍ͯ͠Δ͕ɺͦͷ֬ͷ͔Βͳ͍ • ֶशσʔλʹج͍ͮͯਪఆͨ͠Ϛονϯά֬ΛͬͯϥϯΩϯάΛ࡞͠ɺ࠷దԽΛਤΔ
© 2024 Wantedly, Inc. ػցֶश͕αʔϏεͷίΞՁͰ͋ΔϚονϯάΛΓཱͨͤΔ ػցֶशϞσϧͷ༧ଌਫ਼্͕͢Δ΄ͲɺͦΕʹͬͯϓϩμΫτͷॏཁࢦ ඪ্͕͍ͯ͘͠ߏ → ػցֶश͕ϓϩμΫτͷՁΛఏڙ͢ΔͨΊͷ
“must have” ͳঢ়ଶ ػցֶशϞσϧͷੑೳ αʔϏεͷ ఏڙՁ
© 2024 Wantedly, Inc. Ϛονϯά༧ଌͷయܕతΞϓϩʔν ҎԼͷೋछྨʹେผͨ͠߹ɺجຊతʹΘΕΔͷ Predict-then-Aggregate ͷܗࣜ • Direct
Match Prediction (DMP) : ؍ଌ͞ΕͨϚονϯάʹج͍ͮͯϚον֬Λ༧ଌ͢Δ • Predict-then-Aggregate (PtA) : ํͷબΛಠཱʹϞσϧԽ͠ɺͦΕΒͷ༧ଌΛू͢Δ Direct Match Prediction Predict-then-Aggregate 𝒟 = {(ci , ji , yc→j i , yj→c i )}n i=1 ֶशσʔληοτɿ 𝒟 = {(ci , ji , mi )}n i=1 ؍ଌ͞ΕͨϚονϯά ̂ m = argmin ̂ m′  n ∑ i=1 ℓ( ̂ m′  (ci , ji ), mi ) Ϛονϯά֬ͷ ֶशɾ༧ଌɿ ֶशσʔληοτɿ اۀ͕ϢʔβʔʹΞΫγϣϯ͔ͨ͠ Ϣʔβʔ͔ΒΞΫγϣϯ͔͋ͬͨ ̂ pc→j = argmin ̂ p′  n ∑ i=1 ℓ( ̂ p′  (ci , ji ), yc→j i ) اۀ→Ϣʔβʔͷ બ֬ɿ Ϣʔβʔ→اۀͷ બ֬ɿ ̂ pj→c = argmin ̂ p′  n ∑ i=1 ℓ( ̂ p′  (ci , ji ), yj→c i ) ̂ m = M( ̂ pc→j, ̂ pj→c) Ϛονϯά֬ɿ ଛࣦؔ ूؔ • DMPతͳϚονϯάͷ༧ଌ͕ՄೳͰ͋Δ • ҰํͰϚονͷϥϕϧඇৗʹεύʔεͰ͋Γɺֶश͕ࠔ • PtAൺֱతີͳೋछྨͷϥϕϧΛͦΕͧΕ༧ଌ͢Δ λεΫʹׂ͢Δ͜ͱͰɺεύʔεੑͷʹରॲ ※ ؆୯ԽͷͨΊɺҎ߱ اۀଆͷέʔεͷΈΛߟ͑Δ
© 2024 Wantedly, Inc. ૬ޓਪનγεςϜ(Reciprocal Recommender Systems) ૬ޓਪનγεςϜͱʮαʔϏεͷϢʔβʔΛޓ͍ʹਪન͠߹͏γεςϜʯ • ਪનΛड͚औΔϢʔβʔͱਪન͞ΕͨϢʔβʔͷ྆ํ͕ຬͯ͠ਪનޭͱ͢Δ
• ૬ޓਪનγεςϜ Predict-then-Aggregate(PtA) ΞϓϩʔνΛ࠾༻͢Δ ઌߦݚڀͷΞϓϩʔν • ίϯςϯπϕʔε [Pizzato+, 2010] • ڠௐϑΟϧλϦϯάϕʔε [Xia+, 2015] [Neve+, 2019] • ϋΠϒϦοτϕʔε [Neve+, 2020] • DLϕʔε [Yıldırım+, 2021] [Luo+, 2020] [Liu+, 2024] ूؔ • 2ͭͷผʑͷ༧ଌΛΈ߹ΘͤΔׂΛ࣋ͭ • جຊతʹώϡʔϦεςΟοΫͳͷɻ୯७ੵɺௐ ฏۉɺزԿฏۉͳͲ [Pizzato+, 2010] [Neve+, 2019] جຊతͳߏ ̂ pa→b Preference Score from a to b M( ̂ pa→b, ̂ pb→a) Aggregation ̂ pb→a Preference Score from b to a ߦಈϩά ଐੑσʔλ ͳͲ
© 2024 Wantedly, Inc. ࣮ݧ݁Ռͷ֓ཁ ϓϩμΫτͷ࣮ࡍͷσʔλΛ࣮ͬͨݧͷ࣮ࢪ • ΦϑϥΠϯɿDMP ͱෳͷूؔͷύλʔϯͷ PtA
Λൺֱɻํͷᅂͷूͷ༗ޮੑΛ֬ೝ • ΦϯϥΠϯɿPtA(Scout-Only)ͱൺֱͨ͠ PtA(Harmonic Mean) ͷੑೳΛݕূɺେ෯ͳKPIͷ্Λ֬ೝ ϕʔεϥΠϯ M( ̂ pc→j, ̂ pj→c) = ̂ pc→j • PtA (Scout-Only)ɿ M( ̂ pc→j, ̂ pj→c) = ̂ pj→c • PtA (Reply-Only)ɿ ݕ౼ख๏ M( ̂ pc→j, ̂ pj→c) = ̂ pc→j ⋅ ̂ pj→c • PtA (Multiplication)ɿ M( ̂ pc→j, ̂ pj→c) = 2 ̂ pc→j ⋅ ̂ pj→c ̂ pc→j + ̂ pj→c • PtA (Harmonic Mean)ɿ ΦϑϥΠϯධՁͷҰࣄྫ
© 2024 Wantedly, Inc. ٕज़త՝ - ਪનػձͷภΓʹΑΔҰ෦Ϣʔβʔͷूத ਪનػձͷภΓ͕ੜ͡Δ͜ͱͰɺϓϥοτϑΥʔϜશମͷརӹ(Ϛον૯)͕େ͖͘ͳΒͳ͍ • ֤ϢʔβʔʹΩϟύγςΟ(Ϛονͷ্ݶ)͕ଘࡏɺͦΕΛ͑ΔҙΛΒͬͯରԠͰ͖ͳ͍
• ඃਪનػձͷগͳ͍ϢʔβʔɺޭମݧͱͳΔϚονϯάΛ࣮ݱ͢Δػձ͕ݶΒΕͯ͠·͏ • طଘͷ૬ޓਪનγεςϜݸผͷϚονΛ࠷దԽ͠ϥϯΩϯά͝ͱʹಠཱͯ͠ܭࢉ͍ͯ͠ΔͨΊɺਪ નػձͷภΓΛੜͤͯ͡͞͠·͏ શ෦ରԠ Ͱ͖ͳ͍… εΧτ͕ དྷͳ͍… ՝ʹର͢ΔΞϓϩʔν • ٻ৬ऀ͕اۀ͔ΒͷεΧτʹԠ͢Δ͕֬ɺ ٻ৬ऀ͕ΑΓଟ͘ͷεΧτΛड͚ΔʹͭΕͯ ݮগ͢ΔՄೳੑΛߟྀ͠ɺϚον૯͕࠷େԽ ͞ΕΔΑ͏ϥϯΩϯάΛ࠷దԽ [Su+, 2022] • Ϛονϯάཧʹج͖ͮɺํͷϢʔβͷᅂ ͚ͩͰͳ͘ΩϟύγςΟΛߟྀͨ͠ूΛߦ͏ [Tomita+, 2022]
© 2024 Wantedly, Inc. ٕज़త՝ - ํͷᅂͷूํ๏ ᅂͷूํ๏αʔϏεͦΕΛར༻͢ΔϢʔβʔͷੑ࣭ʹԠͯ͡ઃܭ͢Δඞཁ͕͋Δ • ํͷᅂ༧ଌ݁ՌΛͲͷΑ͏ʹू͢Δ͔ࣗ໌Ͱͳ͍
• Ұൠతʹɺௐฏۉͱ͍ͬͨɺͲͪΒ͔ยํͷείΞ͕͍ͱूͨ͠είΞ͘ͳΔͱ͍͏ੑ࣭ Λ࣋ͭ͜ͱ͕·͍͠ͱ͞Ε͍ͯΔ [Palomares+, 2021] [Neve+, 2019] • ᘳʹ֬ΛਪఆͰ͖ͨͷͰ͋Εɺू ͍ؔΒͳ͍ͣ ɻ ֤ଆͷ༧ଌͷζϨΛमਖ਼͢ΔΛ ू͕ؔ୲͍ͬͯΔɺͱղऍͰ͖Δɻ ՝ʹର͢ΔΞϓϩʔν • ํͷᅂͷॏΈΛϢʔβʔ͝ͱʹ࠷దԽ͢Δ ख๏ΛఏҊ [Kleinermann+, 2018] ूํ๏ͷ·ͱΊ [Palomares+, 2021]
© 2024 Wantedly, Inc. ٕज़త՝ - Ϛονϯάͷεύʔεੑͷରॲ ϚονϯάϓϥοτϑΥʔϜͰϚονϯάͱ͍͏ใ͕ಘʹ͍͘ಛੑ͕͋Δ • δϣϒϚονϯάͷ߹ʮస৬ʯཱ͕͢Δͱɺ࣍ͷߦಈΛى͜͢·Ͱʹ͍͕͔͔࣌ؒΔ
• ਪનଆͱඃਪનଆͷํͷҙͱߦಈ͕߹கͯ͠ॳΊͯϚονϯάཱ͕͢Δ • Ϛονϯάͷ༧ଌਫ਼Λ্͛ΔͨΊʹɺͲͷΑ͏ͳใΛͲ͏ѻ͏͖͔͕՝ͱͳΔ ՝ʹର͢ΔΞϓϩʔν • ࣝάϥϑ͔ΒϝλύεΛநग़ͯ͠Ϛονϯάͷ ϞσϦϯάʹऔΓೖΕΔ͜ͱͰɺΠϯλϥΫγϣ ϯ͚ͩͰͳ͘ίϯςϯπใΛ༗ޮతʹ׆༻͢Δ [Lai+, 2024]
© 2024 Wantedly, Inc. ݚڀ։ൃ - Ϛον༧ଌਫ਼ͷ্ • ϚονϥϕϧΛֶश͢ΔతͳΞϓϩʔν͕ͩɺ
Ϛονϥϕϧͷۃͳεύʔεੑ͕ͱͳΓɺ ੑೳͷߴ͍ϞσϧΛ࡞Εͳ͍ →ΞΠσΞɿҟͳΔੑ࣭Λ࣋ͭ2छྨͷใΛޮՌతʹΈ߹Θͤͯɺີͱਫ਼ͷʮ͍͍ͱ ͜औΓʯΛ࣮ݱ͢Δ Predict-then-Aggregate(PtA)ͷ՝ Direct Match Prediction(DMP)ͷ՝ • Ϛονϯάͱ͍͏ϞσϧԽΛɺಠཱͨ͠2छྨͷϞσ ϧʹׂ͢Δ͜ͱʹΑ͕ͬͯੜ͡Δ • σʔλλεΫͷੑ࣭ʹ߹ΘͤͨूؔΛదʹઃ ܭ͠ͳ͍ͱύϑΥʔϚϯε͕ෆे • ֤Ϟσϧͷ༧ଌޡࠩͷ͕࠷ऴతͳϥϯΩϯάύ ϑΥʔϚϯεʹӨڹ͢Δ छྨ ਫ਼ ີ ਅͷϚονϥϕϧ ਖ਼֬ ↑ ૄ ↓ Ϛον༧ଌ ൺֱతෆਖ਼֬ ↓ ີ ↑ S. Goda, Y. Hayashi, Y. Saito, A Best-of-Both Approach to Improve Match Predictions and Reciprocal Recommendations for Job Search. arXiv preprint arXiv:2409.10992 (2024).
© 2024 Wantedly, Inc. ݚڀ։ൃ - Ϛον༧ଌਫ਼ͷ্ ఏҊख๏ spseudo (c,
j; αc,j ) = αc,j ⋅ m(c, j) + (1 − αc,j ) ⋅ ̂ pc→j ⋅ ̂ pj→c ਅͷϚονϥϕϧͱϚον༧ଌΛΈ߹Θͤͨ Pseudo Match Scores Λੜ͠ɺϝλϞσϧΛֶश ਅͷϚονϥϕϧ Ϛον༧ଌ ̂ f = argminf′  ∑ (c,j) ℓ( f′  (c, j), spseudo (c, j; α)) ΦϑϥΠϯධՁ݁Ռ • ϝλϞσϧΛ༻͢Δ͜ͱͰɺैདྷͷPtAͷूϑΣʔζͰ ൃੜ͢ΔΤϥʔͷӨڹΛݮ͍ͯ͠ΔՄೳੑ͕͋Δ • ҟͳΔείΞใΛΈ߹ΘͤΔ͜ͱʹΑͬͯɺΞϯαϯϒϧ తͳޮՌ͕ಘΒΕ͍ͯΔՄೳੑ͕͋Δ ղऍ S. Goda, Y. Hayashi, Y. Saito, A Best-of-Both Approach to Improve Match Predictions and Reciprocal Recommendations for Job Search. arXiv preprint arXiv:2409.10992 (2024).