Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ジョブマッチングサービスにおける相互推薦システムの応用事例と課題
Search
Shuhei Goda
November 07, 2024
Technology
3
990
ジョブマッチングサービスにおける相互推薦システムの応用事例と課題
第27回情報論的学習理論ワークショップ (IBIS2024)
企画セッション3:ビジネスと機械学習
https://ibisml.org/ibis2024/os/
Shuhei Goda
November 07, 2024
Tweet
Share
More Decks by Shuhei Goda
See All by Shuhei Goda
Turing × atmaCup #18 - 1st Place Solution
hakubishin3
0
950
とある事業会社にとっての Kaggler の魅力
hakubishin3
8
2.8k
課題の解像度が荒かったことで意図した改善ができなかった話
hakubishin3
3
1k
Wantedly におけるマッチング体験を最大化させるための推薦システム
hakubishin3
4
1.3k
Recommendation Industry Talks #1 Opening
hakubishin3
1
410
会社訪問アプリ「Wantedly Visit」での シゴトに関する興味選択機能と推薦改善
hakubishin3
0
660
論文紹介: Improving Implicit Feedback-Based Recommendation through Multi-Behavior Alignment(Xin Xin et al., 2023)
hakubishin3
0
660
Feedback Prize - English Language Learning における擬似ラベルの品質向上の取り組み
hakubishin3
0
1.1k
ウォンテッドリーにおける推薦システムのオフライン評価の仕組み
hakubishin3
7
7.1k
Other Decks in Technology
See All in Technology
Function Body Macros で、SwiftUI の View に Accessibility Identifier を自動付与する/Function Body Macros: Autogenerate accessibility identifiers for SwiftUI Views
miichan
2
180
初めてAWSを使うときのセキュリティ覚書〜初心者支部編〜
cmusudakeisuke
1
250
AIエージェント開発用SDKとローカルLLMをLINE Botと組み合わせてみた / LINEを使ったLT大会 #14
you
PRO
0
120
Snowflake Intelligenceにはこうやって立ち向かう!クラシルが考えるAI Readyなデータ基盤と活用のためのDataOps
gappy50
0
210
バイブスに「型」を!Kent Beckに学ぶ、AI時代のテスト駆動開発
amixedcolor
2
550
5分でカオスエンジニアリングを分かった気になろう
pandayumi
0
240
大「個人開発サービス」時代に僕たちはどう生きるか
sotarok
20
10k
ガチな登山用デバイスからこんにちは
halka
1
240
DevIO2025_継続的なサービス開発のための技術的意思決定のポイント / how-to-tech-decision-makaing-devio2025
nologyance
1
390
Webアプリケーションにオブザーバビリティを実装するRust入門ガイド
nwiizo
7
820
20250910_障害注入から効率的復旧へ_カオスエンジニアリング_生成AIで考えるAWS障害対応.pdf
sh_fk2
3
250
Aurora DSQLはサーバーレスアーキテクチャの常識を変えるのか
iwatatomoya
1
960
Featured
See All Featured
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
15k
How to train your dragon (web standard)
notwaldorf
96
6.2k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Bash Introduction
62gerente
615
210k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
Thoughts on Productivity
jonyablonski
70
4.8k
The Language of Interfaces
destraynor
161
25k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.6k
Done Done
chrislema
185
16k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
YesSQL, Process and Tooling at Scale
rocio
173
14k
Mobile First: as difficult as doing things right
swwweet
224
9.9k
Transcript
© 2024 Wantedly, Inc. δϣϒϚονϯάαʔϏεʹ͓͚Δ ૬ޓਪનγεςϜͷԠ༻ࣄྫͱ՝ Nov. 7 2024
- Shuhei Goda ୈ27ճใతֶशཧϫʔΫγϣοϓ (IBIS2024) اըηογϣϯ3ɿϏδωεͱػցֶश
© 2024 Wantedly, Inc. ໊લɿ ߹ా पฏ Shuhei Goda
ॴଐͱׂɿ ΥϯςουϦʔגࣜձࣾ ɾData Team Manager ɾMachine Learning Tech Lead ɾProduct Manager Kaggle Tierɿ Kaggle Competitions Grandmaster @jy_msc ࣗݾհ https://www.kaggle.com/shuheigoda
©2024 Wantedly, Inc. ڀۃͷదࡐదॴʹΑΓɺ γΰτͰίίϩΦυϧͻͱΛ;͢ ࢲͨͪͷϛογϣϯ ©2024 Wantedly, Inc.
© 2024 Wantedly, Inc. iOS, Android and Web ؾܰʹձࣾ๚ ϛογϣϯՁ؍ͷڞײͰϚονϯά
• څ༩རްੜͳͲͷ݅Ͱͳ͘ɺ͍͕͋Εձࣾͷ نʹͱΒΘΕͳ͍ ·ͣʮΛฉ͖ʹߦ͘ʯͱ͍͏৽͍͠ମݧ • ݸਓͱاۀ͕ϑϥοτͳઢͰग़ձ͑Δ͜ͱͰɺΑΓັྗ తͳॴΛݟ͚ͭΔ͜ͱ͕Մೳʹ ձࣾ๚ΞϓϦʮWantedly Visitʯ
© 2024 Wantedly, Inc. తΛୡ͢ΔͨΊʹɺ֤ొਓҎԼͷΑ͏ʹߦಈ͢Δ αʔϏεΛར༻͢Δਓͷతͱߦಈ ొਓ αʔϏεΛར༻͢Δత Ϣʔβʔ
ઓతͰΓ͕͍ͷ͋Δࣄʹͭ͘ اۀ ࣗࣾͰ׆༂Ͱ͖ΔਓࡐΛ࠾༻͢Δ ࣗͷίϯςϯπ Λ࡞͢Δ ૬खͷίϯςϯπ ΛӾཡ͢Δ ૬खʹ໘ஊͷػձ Λਃ͠ࠐΉ
© 2024 Wantedly, Inc. ϓϥοτϑΥʔϜߏʢίϯςϯπʣ Ϣʔβʔ ձࣾһ ෭ۀ ϑϦʔϥϯε ֶੜ
اۀ ܦӦ ࣾһ ਓࣄ Wantedly Visit ϓϩϑΟʔϧ ࡞ Ӿཡ ձࣾϖʔδɾืू ࡞ Ӿཡ
© 2024 Wantedly, Inc. ϓϥοτϑΥʔϜߏʢϚονϯάʣ Ϣʔβʔ ձࣾһ ෭ۀ ϑϦʔϥϯε ֶੜ
اۀ ܦӦ ࣾһ ਓࣄ Wantedly Visit Ԡื Λฉ͍ͯΈ͍ͨͰ͢ ͥͻ͓͠·͠ΐ͏ʂ εΧτ ͓͠·ͤΜ͔ʁ ͓Λฉ͔͍ͤͯͩ͘͞
© 2024 Wantedly, Inc. ϓϥοτϑΥʔϜͷϞσϧʢུ֓ʣ ܧଓɾ෮ؼ ܧଓɾ෮ؼ Ԡื εΧτ ྲྀೖ
৽ن • 2-sided marketplaceͰ͋ΓɺاۀͱϢʔβʔͷ྆ํ͕υϥΠόʔ • ྑ࣭ͳίϯςϯπͷੵɺΓͳ͍Ϛονϯάʢޭମݧʣ͕ॏཁ
© 2024 Wantedly, Inc. ϓϥοτϑΥʔϜͷ՝ - ͷϘτϧωοΫԿ͔ 20248݄ظͷొͱਪҠ 403ສਓ 4.1ສࣾ
ෳࡶͷ૿ՃͱͦΕʹ͏ϚονϯάޮͷԼ Ϣʔβʔ૿Ճʹ͏՝ • ෳࡶͷ૿Ճ→ϚονϯάޮͷԼ →Ϛονϯά૿ՃͷಷԽ→ͷఀϦεΫ Ϛονϯάޮ ͷԼ Ϣʔβʔ Ϛονϯάޮ
© 2024 Wantedly, Inc. ϓϥοτϑΥʔϜͷʹඞཁͳऔΓΈ Ϣʔβʔ Ϛονϯάޮ Ϣʔβʔ Ϛονϯάޮ Ϛονϯάޮ
Ϛονϯάޮ Ϛονϯάޮ͕ߴ͘ҡ࣋͞ΕΔঢ়ଶΛ࡞Γ αʔϏεશମͷ࣋ଓతͳΛ࣮ݱ͢Δ Before After
© 2024 Wantedly, Inc. Ϛονϯάޮ͕ߴ͘ҡ࣋͞ΕΔঢ়ଶΛͲ͏࣮ݱ͢Δ͔ p(match = 1|c, j) =
p(exam = 1|c, j) × p(scout = 1|c, j, exam = 1) × p(reply = 1|c, j, scout = 1) اۀͲͷϢʔβʔΛ ݟΔ͔ اۀʹͱͬͯͦͷϢʔβʔ ັྗతʹײ͡ΒΕΔ͔ Ϣʔβʔʹͱͬͯͦͷืू ັྗతʹײ͡ΒΕΔ͔ ਪનγεςϜͰϢʔβʔɾاۀํͷίϯςϯπͷදࣔΛ੍ޚ͢Δ • To اۀɿاۀʹͱͬͯັྗతͰɺͦͷاۀͱϚονϯά͍͢͠ϢʔβʔΛදࣔ • To ϢʔβʔɿϢʔβʔʹͱͬͯັྗతͰɺͦͷϢʔβʔͱϚονϯά͍͢͠ืूΛදࣔ j … Job seeker c … Company ͜͜ʹհೖ͢Δ p(match = 1| j, c) = p(exam = 1| j, c) × p(apply = 1| j, c, exam = 1) × p(reply = 1| j, c, apply = 1) ϢʔβʔͲͷاۀΛ ݟΔ͔ Ϣʔβʔʹͱͬͯͦͷืू ັྗతʹײ͡ΒΕΔ͔ اۀʹͱͬͯͦͷϢʔβʔ ັྗతʹײ͡ΒΕΔ͔ εΧτ༝དྷ ͷϚονϯά֬ Ԡื༝དྷ ͷϚονϯά֬
© 2024 Wantedly, Inc. ղ͖͘ػցֶशλεΫ Ϛονϯά͕࠷େͱͳΔΑ͏ͳਪનϦετΛ֤ඃਪનऀʹରͯ͠࡞͢ΔλεΫ σ* c := argsortj∈
𝒥 m(c, j) σ* j := argsortc∈ 𝒞 m(c, j) →֤اۀ c ʹͱͬͯཧతͳϥϯΩϯάɺ m(c, j)ਅͷϚονϯά֬ →֤Ϣʔβʔ j ʹͱͬͯཧతͳϥϯΩϯά • ཧతͳϥϯΩϯάਅͷϚονϯά֬ʹґଘ͍ͯ͠Δ͕ɺͦͷ֬ͷ͔Βͳ͍ • ֶशσʔλʹج͍ͮͯਪఆͨ͠Ϛονϯά֬ΛͬͯϥϯΩϯάΛ࡞͠ɺ࠷దԽΛਤΔ
© 2024 Wantedly, Inc. ػցֶश͕αʔϏεͷίΞՁͰ͋ΔϚονϯάΛΓཱͨͤΔ ػցֶशϞσϧͷ༧ଌਫ਼্͕͢Δ΄ͲɺͦΕʹͬͯϓϩμΫτͷॏཁࢦ ඪ্͕͍ͯ͘͠ߏ → ػցֶश͕ϓϩμΫτͷՁΛఏڙ͢ΔͨΊͷ
“must have” ͳঢ়ଶ ػցֶशϞσϧͷੑೳ αʔϏεͷ ఏڙՁ
© 2024 Wantedly, Inc. Ϛονϯά༧ଌͷయܕతΞϓϩʔν ҎԼͷೋछྨʹେผͨ͠߹ɺجຊతʹΘΕΔͷ Predict-then-Aggregate ͷܗࣜ • Direct
Match Prediction (DMP) : ؍ଌ͞ΕͨϚονϯάʹج͍ͮͯϚον֬Λ༧ଌ͢Δ • Predict-then-Aggregate (PtA) : ํͷબΛಠཱʹϞσϧԽ͠ɺͦΕΒͷ༧ଌΛू͢Δ Direct Match Prediction Predict-then-Aggregate 𝒟 = {(ci , ji , yc→j i , yj→c i )}n i=1 ֶशσʔληοτɿ 𝒟 = {(ci , ji , mi )}n i=1 ؍ଌ͞ΕͨϚονϯά ̂ m = argmin ̂ m′  n ∑ i=1 ℓ( ̂ m′  (ci , ji ), mi ) Ϛονϯά֬ͷ ֶशɾ༧ଌɿ ֶशσʔληοτɿ اۀ͕ϢʔβʔʹΞΫγϣϯ͔ͨ͠ Ϣʔβʔ͔ΒΞΫγϣϯ͔͋ͬͨ ̂ pc→j = argmin ̂ p′  n ∑ i=1 ℓ( ̂ p′  (ci , ji ), yc→j i ) اۀ→Ϣʔβʔͷ બ֬ɿ Ϣʔβʔ→اۀͷ બ֬ɿ ̂ pj→c = argmin ̂ p′  n ∑ i=1 ℓ( ̂ p′  (ci , ji ), yj→c i ) ̂ m = M( ̂ pc→j, ̂ pj→c) Ϛονϯά֬ɿ ଛࣦؔ ूؔ • DMPతͳϚονϯάͷ༧ଌ͕ՄೳͰ͋Δ • ҰํͰϚονͷϥϕϧඇৗʹεύʔεͰ͋Γɺֶश͕ࠔ • PtAൺֱతີͳೋछྨͷϥϕϧΛͦΕͧΕ༧ଌ͢Δ λεΫʹׂ͢Δ͜ͱͰɺεύʔεੑͷʹରॲ ※ ؆୯ԽͷͨΊɺҎ߱ اۀଆͷέʔεͷΈΛߟ͑Δ
© 2024 Wantedly, Inc. ૬ޓਪનγεςϜ(Reciprocal Recommender Systems) ૬ޓਪનγεςϜͱʮαʔϏεͷϢʔβʔΛޓ͍ʹਪન͠߹͏γεςϜʯ • ਪનΛड͚औΔϢʔβʔͱਪન͞ΕͨϢʔβʔͷ྆ํ͕ຬͯ͠ਪનޭͱ͢Δ
• ૬ޓਪનγεςϜ Predict-then-Aggregate(PtA) ΞϓϩʔνΛ࠾༻͢Δ ઌߦݚڀͷΞϓϩʔν • ίϯςϯπϕʔε [Pizzato+, 2010] • ڠௐϑΟϧλϦϯάϕʔε [Xia+, 2015] [Neve+, 2019] • ϋΠϒϦοτϕʔε [Neve+, 2020] • DLϕʔε [Yıldırım+, 2021] [Luo+, 2020] [Liu+, 2024] ूؔ • 2ͭͷผʑͷ༧ଌΛΈ߹ΘͤΔׂΛ࣋ͭ • جຊతʹώϡʔϦεςΟοΫͳͷɻ୯७ੵɺௐ ฏۉɺزԿฏۉͳͲ [Pizzato+, 2010] [Neve+, 2019] جຊతͳߏ ̂ pa→b Preference Score from a to b M( ̂ pa→b, ̂ pb→a) Aggregation ̂ pb→a Preference Score from b to a ߦಈϩά ଐੑσʔλ ͳͲ
© 2024 Wantedly, Inc. ࣮ݧ݁Ռͷ֓ཁ ϓϩμΫτͷ࣮ࡍͷσʔλΛ࣮ͬͨݧͷ࣮ࢪ • ΦϑϥΠϯɿDMP ͱෳͷूؔͷύλʔϯͷ PtA
Λൺֱɻํͷᅂͷूͷ༗ޮੑΛ֬ೝ • ΦϯϥΠϯɿPtA(Scout-Only)ͱൺֱͨ͠ PtA(Harmonic Mean) ͷੑೳΛݕূɺେ෯ͳKPIͷ্Λ֬ೝ ϕʔεϥΠϯ M( ̂ pc→j, ̂ pj→c) = ̂ pc→j • PtA (Scout-Only)ɿ M( ̂ pc→j, ̂ pj→c) = ̂ pj→c • PtA (Reply-Only)ɿ ݕ౼ख๏ M( ̂ pc→j, ̂ pj→c) = ̂ pc→j ⋅ ̂ pj→c • PtA (Multiplication)ɿ M( ̂ pc→j, ̂ pj→c) = 2 ̂ pc→j ⋅ ̂ pj→c ̂ pc→j + ̂ pj→c • PtA (Harmonic Mean)ɿ ΦϑϥΠϯධՁͷҰࣄྫ
© 2024 Wantedly, Inc. ٕज़త՝ - ਪનػձͷภΓʹΑΔҰ෦Ϣʔβʔͷूத ਪનػձͷภΓ͕ੜ͡Δ͜ͱͰɺϓϥοτϑΥʔϜશମͷརӹ(Ϛον૯)͕େ͖͘ͳΒͳ͍ • ֤ϢʔβʔʹΩϟύγςΟ(Ϛονͷ্ݶ)͕ଘࡏɺͦΕΛ͑ΔҙΛΒͬͯରԠͰ͖ͳ͍
• ඃਪનػձͷগͳ͍ϢʔβʔɺޭମݧͱͳΔϚονϯάΛ࣮ݱ͢Δػձ͕ݶΒΕͯ͠·͏ • طଘͷ૬ޓਪનγεςϜݸผͷϚονΛ࠷దԽ͠ϥϯΩϯά͝ͱʹಠཱͯ͠ܭࢉ͍ͯ͠ΔͨΊɺਪ નػձͷภΓΛੜͤͯ͡͞͠·͏ શ෦ରԠ Ͱ͖ͳ͍… εΧτ͕ དྷͳ͍… ՝ʹର͢ΔΞϓϩʔν • ٻ৬ऀ͕اۀ͔ΒͷεΧτʹԠ͢Δ͕֬ɺ ٻ৬ऀ͕ΑΓଟ͘ͷεΧτΛड͚ΔʹͭΕͯ ݮগ͢ΔՄೳੑΛߟྀ͠ɺϚον૯͕࠷େԽ ͞ΕΔΑ͏ϥϯΩϯάΛ࠷దԽ [Su+, 2022] • Ϛονϯάཧʹج͖ͮɺํͷϢʔβͷᅂ ͚ͩͰͳ͘ΩϟύγςΟΛߟྀͨ͠ूΛߦ͏ [Tomita+, 2022]
© 2024 Wantedly, Inc. ٕज़త՝ - ํͷᅂͷूํ๏ ᅂͷूํ๏αʔϏεͦΕΛར༻͢ΔϢʔβʔͷੑ࣭ʹԠͯ͡ઃܭ͢Δඞཁ͕͋Δ • ํͷᅂ༧ଌ݁ՌΛͲͷΑ͏ʹू͢Δ͔ࣗ໌Ͱͳ͍
• Ұൠతʹɺௐฏۉͱ͍ͬͨɺͲͪΒ͔ยํͷείΞ͕͍ͱूͨ͠είΞ͘ͳΔͱ͍͏ੑ࣭ Λ࣋ͭ͜ͱ͕·͍͠ͱ͞Ε͍ͯΔ [Palomares+, 2021] [Neve+, 2019] • ᘳʹ֬ΛਪఆͰ͖ͨͷͰ͋Εɺू ͍ؔΒͳ͍ͣ ɻ ֤ଆͷ༧ଌͷζϨΛमਖ਼͢ΔΛ ू͕ؔ୲͍ͬͯΔɺͱղऍͰ͖Δɻ ՝ʹର͢ΔΞϓϩʔν • ํͷᅂͷॏΈΛϢʔβʔ͝ͱʹ࠷దԽ͢Δ ख๏ΛఏҊ [Kleinermann+, 2018] ूํ๏ͷ·ͱΊ [Palomares+, 2021]
© 2024 Wantedly, Inc. ٕज़త՝ - Ϛονϯάͷεύʔεੑͷରॲ ϚονϯάϓϥοτϑΥʔϜͰϚονϯάͱ͍͏ใ͕ಘʹ͍͘ಛੑ͕͋Δ • δϣϒϚονϯάͷ߹ʮస৬ʯཱ͕͢Δͱɺ࣍ͷߦಈΛى͜͢·Ͱʹ͍͕͔͔࣌ؒΔ
• ਪનଆͱඃਪનଆͷํͷҙͱߦಈ͕߹கͯ͠ॳΊͯϚονϯάཱ͕͢Δ • Ϛονϯάͷ༧ଌਫ਼Λ্͛ΔͨΊʹɺͲͷΑ͏ͳใΛͲ͏ѻ͏͖͔͕՝ͱͳΔ ՝ʹର͢ΔΞϓϩʔν • ࣝάϥϑ͔ΒϝλύεΛநग़ͯ͠Ϛονϯάͷ ϞσϦϯάʹऔΓೖΕΔ͜ͱͰɺΠϯλϥΫγϣ ϯ͚ͩͰͳ͘ίϯςϯπใΛ༗ޮతʹ׆༻͢Δ [Lai+, 2024]
© 2024 Wantedly, Inc. ݚڀ։ൃ - Ϛον༧ଌਫ਼ͷ্ • ϚονϥϕϧΛֶश͢ΔతͳΞϓϩʔν͕ͩɺ
Ϛονϥϕϧͷۃͳεύʔεੑ͕ͱͳΓɺ ੑೳͷߴ͍ϞσϧΛ࡞Εͳ͍ →ΞΠσΞɿҟͳΔੑ࣭Λ࣋ͭ2छྨͷใΛޮՌతʹΈ߹Θͤͯɺີͱਫ਼ͷʮ͍͍ͱ ͜औΓʯΛ࣮ݱ͢Δ Predict-then-Aggregate(PtA)ͷ՝ Direct Match Prediction(DMP)ͷ՝ • Ϛονϯάͱ͍͏ϞσϧԽΛɺಠཱͨ͠2छྨͷϞσ ϧʹׂ͢Δ͜ͱʹΑ͕ͬͯੜ͡Δ • σʔλλεΫͷੑ࣭ʹ߹ΘͤͨूؔΛదʹઃ ܭ͠ͳ͍ͱύϑΥʔϚϯε͕ෆे • ֤Ϟσϧͷ༧ଌޡࠩͷ͕࠷ऴతͳϥϯΩϯάύ ϑΥʔϚϯεʹӨڹ͢Δ छྨ ਫ਼ ີ ਅͷϚονϥϕϧ ਖ਼֬ ↑ ૄ ↓ Ϛον༧ଌ ൺֱతෆਖ਼֬ ↓ ີ ↑ S. Goda, Y. Hayashi, Y. Saito, A Best-of-Both Approach to Improve Match Predictions and Reciprocal Recommendations for Job Search. arXiv preprint arXiv:2409.10992 (2024).
© 2024 Wantedly, Inc. ݚڀ։ൃ - Ϛον༧ଌਫ਼ͷ্ ఏҊख๏ spseudo (c,
j; αc,j ) = αc,j ⋅ m(c, j) + (1 − αc,j ) ⋅ ̂ pc→j ⋅ ̂ pj→c ਅͷϚονϥϕϧͱϚον༧ଌΛΈ߹Θͤͨ Pseudo Match Scores Λੜ͠ɺϝλϞσϧΛֶश ਅͷϚονϥϕϧ Ϛον༧ଌ ̂ f = argminf′  ∑ (c,j) ℓ( f′  (c, j), spseudo (c, j; α)) ΦϑϥΠϯධՁ݁Ռ • ϝλϞσϧΛ༻͢Δ͜ͱͰɺैདྷͷPtAͷूϑΣʔζͰ ൃੜ͢ΔΤϥʔͷӨڹΛݮ͍ͯ͠ΔՄೳੑ͕͋Δ • ҟͳΔείΞใΛΈ߹ΘͤΔ͜ͱʹΑͬͯɺΞϯαϯϒϧ తͳޮՌ͕ಘΒΕ͍ͯΔՄೳੑ͕͋Δ ղऍ S. Goda, Y. Hayashi, Y. Saito, A Best-of-Both Approach to Improve Match Predictions and Reciprocal Recommendations for Job Search. arXiv preprint arXiv:2409.10992 (2024).