Upgrade to Pro — share decks privately, control downloads, hide ads and more …

マルコフ連鎖でツイート生成

naosuke
February 08, 2017

 マルコフ連鎖でツイート生成

大学院の授業の発表資料です。
マルコフ連鎖を使って、自分っぽいツイートを作るプログラムを作りました

naosuke

February 08, 2017
Tweet

More Decks by naosuke

Other Decks in Programming

Transcript

  1. 2-1 形態素解析の概要 • 形態素解析とは • ⼊⼒⽂を形態素の並びに分解し、 品詞の同定や原形・活⽤形の判定を⾏うこと • 形態素: 意味を持つ最⼩の⾔語単位

    お待ち / し / て / おり / ます / 。 • 著名な形態素解析器 • JUMAN : 京都⼤ ⿊橋研が開発 • 茶筌 (ChaSen) : 奈良先端⼤ 松本研が開発 • 和布蕪 (MeCab) : 詳細は後述 • KAKASI : 漢字→ひらがな変換プログラム 分かち書き機能がある
  2. 2-2 形態素解析器 MeCab • 構⽂解析器 MeCabの概要 • Yet Another Part-of-Speech

    and Morphological Analyzer • ⽇本語を対象とした形態素解析器 • 京都⼤とNTTコミュニケーションが共同研究で開発 • 過去の形態素解析器と⽐較してかなり⾼性能 • 条件付き確率場(CRF)に基づく⾼い解析精度 • ChaSen や KAKASI に⽐べ⾼速 • 利⽤場所 • Mac OS X の Spotlight(OSの検索機能) • iOS の⽇本語⼊⼒エンジン • Mac OS Xの⽇本語⼊⼒エンジン (?)
  3. 2-3 マルコフ連鎖 • マルコフ過程 • マルコフ性をもつ確率過程 • 未来の挙動が現在の状態だけで決定する確率過程 ↑こんなの↑ •

    マルコフ連鎖 • マルコフ過程のうち、取りうる状態が離散的なもの • 割と重要な概念らしい • ⾳声認識とかGoogleのPageRankで利⽤
  4. 3-1 実装関係 • ⾔語: Ruby 2.4 • 形態素解析: MeCab •

    辞書: mecab-ipadic-Neologd (最新語が多く含まれる辞書) • Rubyライブラリ • natto (MeCabのRuby⽤のバインディング) • twitter (Twitter関連のいろいろ) • Kusabi:マルコフ連鎖によるテキストジェネレータ (使ってない) • ツイートログ • Twilog.org からダウンロードできるCSV “ID”, “ツイート⽇時”, “ツイート⽂⾯” • この形式さえあれば他⼈の辞書の⽣成も可能 https://github.com/hanasuke/advmath
  5. 3-2 Tweet群の前処理 • filter.rb • ⾃⾝のつぶやきでないものを除外 • RT • shindanmaker,

    togetterなどのボタンからのツイート系 • swarmapp, はてブなどのアプリ連携のツイート系 • 邪魔な⽂字列を排除 • ”@ユーザ名” • http://~~のURL • “#なんとか”のようなハッシュタグ
  6. 3-3 ツイートの分析となおすけ辞書の作成 • ツイート⽂字列を形態素解析し、配列に格納 私の名前は中野です。→ [“私”, “の”, “名前”, ”は”, ”中野”,

    ”で す”, ”。”] • マルコフ連鎖のためのダミー⽂字列を挿⼊ [“_BEGIN_”, “私”, “の”, “名前”, ”は”, ”中野”, ”です”, ”。”, “_END_”] • N階マルコフモデルを作成する • N個のネストしたハッシュを作成 • ハッシュが存在すれば、要素としての配列に挿⼊ hash[“_BEGIN_”][“私”] = [‘の’, ‘は’, ‘が’, ‘と’, ‘で’,...] hash[“私”][“の”] = [‘名前’, ‘好き’, ‘嫁’, ‘名前’, ‘彼⼥’,...] : :
  7. 5-1 まとめ • ⾃然⾔語処理とマルコフ連鎖 • 形態素解析とマルコフ連鎖によるツイートbotの作成 • 形態素解析器としてMeCabを利⽤ • 辞書として、最新語が多く含まれたものを採⽤

    • ⾼階マルコフモデルによる⽣成⽂章の違い • 2階、3階、4階、5階マルコフ連鎖で⽂章を⽣成 • 2階よりも3階以上のほうが多少マシな⽂章が⽣成されている • 4階以上による差異はあまりない ⇒1ツイートに含まれる形態素が少なすぎるせい? • マイクロブログ的な使い⽅をしてれば、差異が出るのかも
  8. 5-2 今後の課題と感想 • 今後の課題 • リプライ機能 →リプライの中の重要なキーワードから⽣成する感じ? • 機械学習/ニューラルネットワークによるBotの作成 →Hubotとの会話機能とか

    • 感想 • 最近は⾃然⾔語処理のライブラリが豊富で⼿軽に遊べる • “書き⾔葉”ではなく“話し⾔葉”は解析が難しい ⇒安藤研の⼈たち頑張って欲しい • より⾃然に⾒える⽂章の作成は難しい • GoogleとかMicrosoft、Appleの⾔語処理系やばい
  9. 参考⽂献 • MeCab: Yet Another Part-of-Speech and Morphological Analyzer http://taku910.github.io/mecab/

    • マルコフ連鎖の基本とコルモゴロフ⽅程式 http://mathtrain.jp/markovchain • buruzaemon/natto: A Tasty Ruby Binding with MeCab https://github.com/buruzaemon/natto • takuti/kusari: Japanese random sentence generator based on Markov chain https://github.com/takuti/kusari