Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
マルコフ連鎖でツイート生成
Search
naosuke
February 08, 2017
Programming
0
1.7k
マルコフ連鎖でツイート生成
大学院の授業の発表資料です。
マルコフ連鎖を使って、自分っぽいツイートを作るプログラムを作りました
naosuke
February 08, 2017
Tweet
Share
More Decks by naosuke
See All by naosuke
クラウドサービスのウラオモテ / Outside and Inside of Cloud Services
hanasuke
0
1.5k
この素晴らしい新入社員とペアプロを! / Pair-programming with wonderful newcomer!
hanasuke
2
2k
学生サークルとOSCのつながりとこれから
hanasuke
0
380
TouchBarを触りたかった話
hanasuke
2
1.7k
ふりかえりを実践した話
hanasuke
0
320
Other Decks in Programming
See All in Programming
無秩序からの脱却 / Emergence from chaos
nrslib
1
7.8k
Promise.tryで実現する新しいエラーハンドリング New error handling with Promise try
bicstone
3
1k
AIの弱点、やっぱりプログラミングは人間が(も)勉強しよう / YAPC AI and Programming
kishida
10
5.2k
モデル駆動設計をやってみよう Modeling Forum2025ワークショップ/Let’s Try Model-Driven Design
haru860
0
180
GraalVM Native Image トラブルシューティング機能の最新状況(2025年版)
ntt_dsol_java
0
160
手軽に積ん読を増やすには?/読みたい本と付き合うには?
o0h
PRO
1
110
生成AIを活用したリファクタリング実践 ~コードスメルをなくすためのアプローチ
raedion
0
110
connect-python: convenient protobuf RPC for Python
anuraaga
0
140
開発生産性が組織文化になるまでの軌跡
tonegawa07
0
190
FlutterKaigi 2025 システム裏側
yumnumm
0
1.2k
予防に勝る防御なし(2025年版) - 堅牢なコードを導く様々な設計のヒント / Growing Reliable Code PHP Conference Fukuoka 2025
twada
PRO
39
13k
Flutterチームから作る組織の越境文化
findy_eventslides
0
560
Featured
See All Featured
The Cult of Friendly URLs
andyhume
79
6.7k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.8k
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.3k
GitHub's CSS Performance
jonrohan
1032
470k
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.1k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.2k
How GitHub (no longer) Works
holman
315
140k
Faster Mobile Websites
deanohume
310
31k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
Facilitating Awesome Meetings
lara
57
6.6k
Six Lessons from altMBA
skipperchong
29
4.1k
Transcript
マルコフ連鎖を利⽤した ツイート⽣成スクリプトを作った
もくじ 1. つくったものの概要 2. 形態素解析とマルコフ連鎖 3. 実際の対象データの情報 4. 実験結果と⽐較 5.
まとめ
1-1 なにをつくったか • ⾃⾝のツイートから⽂字列を⽣成しツイートする ”なおすけくんbot” • ”しゅうまいくん”の⾃分のツイート版みたいな • いい感じにツイートを分析して、 いい感じの⽇本語の⽂章をツイート
• ツイート分析に形態素解析、 ツイート⽣成にマルコフ連鎖を利⽤
1-2 ツイート解析の概要 ⾃分の過去ツイート達 MeCabによる 形態素解析 なおすけ辞書の⽣成
1-3 ツイート⽣成の概要 マルコフ連鎖による ⽂章⽣成 なおすけ辞書 ツイート
2-1 形態素解析の概要 • 形態素解析とは • ⼊⼒⽂を形態素の並びに分解し、 品詞の同定や原形・活⽤形の判定を⾏うこと • 形態素: 意味を持つ最⼩の⾔語単位
お待ち / し / て / おり / ます / 。 • 著名な形態素解析器 • JUMAN : 京都⼤ ⿊橋研が開発 • 茶筌 (ChaSen) : 奈良先端⼤ 松本研が開発 • 和布蕪 (MeCab) : 詳細は後述 • KAKASI : 漢字→ひらがな変換プログラム 分かち書き機能がある
2-2 形態素解析器 MeCab • 構⽂解析器 MeCabの概要 • Yet Another Part-of-Speech
and Morphological Analyzer • ⽇本語を対象とした形態素解析器 • 京都⼤とNTTコミュニケーションが共同研究で開発 • 過去の形態素解析器と⽐較してかなり⾼性能 • 条件付き確率場(CRF)に基づく⾼い解析精度 • ChaSen や KAKASI に⽐べ⾼速 • 利⽤場所 • Mac OS X の Spotlight(OSの検索機能) • iOS の⽇本語⼊⼒エンジン • Mac OS Xの⽇本語⼊⼒エンジン (?)
2-3 マルコフ連鎖 • マルコフ過程 • マルコフ性をもつ確率過程 • 未来の挙動が現在の状態だけで決定する確率過程 ↑こんなの↑ •
マルコフ連鎖 • マルコフ過程のうち、取りうる状態が離散的なもの • 割と重要な概念らしい • ⾳声認識とかGoogleのPageRankで利⽤
3-1 実装関係 • ⾔語: Ruby 2.4 • 形態素解析: MeCab •
辞書: mecab-ipadic-Neologd (最新語が多く含まれる辞書) • Rubyライブラリ • natto (MeCabのRuby⽤のバインディング) • twitter (Twitter関連のいろいろ) • Kusabi:マルコフ連鎖によるテキストジェネレータ (使ってない) • ツイートログ • Twilog.org からダウンロードできるCSV “ID”, “ツイート⽇時”, “ツイート⽂⾯” • この形式さえあれば他⼈の辞書の⽣成も可能 https://github.com/hanasuke/advmath
3-2 Tweet群の前処理 • filter.rb • ⾃⾝のつぶやきでないものを除外 • RT • shindanmaker,
togetterなどのボタンからのツイート系 • swarmapp, はてブなどのアプリ連携のツイート系 • 邪魔な⽂字列を排除 • ”@ユーザ名” • http://~~のURL • “#なんとか”のようなハッシュタグ
3-3 ツイートの分析となおすけ辞書の作成 • ツイート⽂字列を形態素解析し、配列に格納 私の名前は中野です。→ [“私”, “の”, “名前”, ”は”, ”中野”,
”で す”, ”。”] • マルコフ連鎖のためのダミー⽂字列を挿⼊ [“_BEGIN_”, “私”, “の”, “名前”, ”は”, ”中野”, ”です”, ”。”, “_END_”] • N階マルコフモデルを作成する • N個のネストしたハッシュを作成 • ハッシュが存在すれば、要素としての配列に挿⼊ hash[“_BEGIN_”][“私”] = [‘の’, ‘は’, ‘が’, ‘と’, ‘で’,...] hash[“私”][“の”] = [‘名前’, ‘好き’, ‘嫁’, ‘名前’, ‘彼⼥’,...] : :
3-4 なおすけ辞書を基としたツイート機能 • ソースコードを⾒せながら説明します
4-1 元ツイートのデータ 期間 2012/04/20〜2017.02.01 (1749⽇) ツイート数 約21万 総⽂字数 約398.5万 約18⽂字/ツイート
2012年 2017年
4-2 Botの紹介 • てすとくん @naosuke_test • #naosuke_markov{N}というハッシュタグをつけて、 N階の連鎖によるツイートをツイート • #naosuke_markov3については途中までバグってた
• http://twilog.org/naosuke_test をみながらこの先解説をします
4-3 4階マルコフモデルによるツイート例 • http://twilog.org/naosuke_test/hashtags-naosuke_markov4
4-4 3階マルコフモデルによるツイート例 • http://twilog.org/naosuke_test/hashtags-naosuke_markov3
5-1 まとめ • ⾃然⾔語処理とマルコフ連鎖 • 形態素解析とマルコフ連鎖によるツイートbotの作成 • 形態素解析器としてMeCabを利⽤ • 辞書として、最新語が多く含まれたものを採⽤
• ⾼階マルコフモデルによる⽣成⽂章の違い • 2階、3階、4階、5階マルコフ連鎖で⽂章を⽣成 • 2階よりも3階以上のほうが多少マシな⽂章が⽣成されている • 4階以上による差異はあまりない ⇒1ツイートに含まれる形態素が少なすぎるせい? • マイクロブログ的な使い⽅をしてれば、差異が出るのかも
5-2 今後の課題と感想 • 今後の課題 • リプライ機能 →リプライの中の重要なキーワードから⽣成する感じ? • 機械学習/ニューラルネットワークによるBotの作成 →Hubotとの会話機能とか
• 感想 • 最近は⾃然⾔語処理のライブラリが豊富で⼿軽に遊べる • “書き⾔葉”ではなく“話し⾔葉”は解析が難しい ⇒安藤研の⼈たち頑張って欲しい • より⾃然に⾒える⽂章の作成は難しい • GoogleとかMicrosoft、Appleの⾔語処理系やばい
参考⽂献 • MeCab: Yet Another Part-of-Speech and Morphological Analyzer http://taku910.github.io/mecab/
• マルコフ連鎖の基本とコルモゴロフ⽅程式 http://mathtrain.jp/markovchain • buruzaemon/natto: A Tasty Ruby Binding with MeCab https://github.com/buruzaemon/natto • takuti/kusari: Japanese random sentence generator based on Markov chain https://github.com/takuti/kusari