Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
医療と機械学習とMRI
Search
hayata-yamamoto
April 13, 2019
Science
0
210
医療と機械学習とMRI
発表で使いました
#AIMS
hayata-yamamoto
April 13, 2019
Tweet
Share
More Decks by hayata-yamamoto
See All by hayata-yamamoto
価値提供プロセスを試行錯誤し続けてきた話
hayata_yamamoto
0
120
AppSync と仲良くなろう
hayata_yamamoto
1
180
今日から機械学習チームを始めるには
hayata_yamamoto
0
110
レアジョブのデータ活用の今とこれから
hayata_yamamoto
0
740
ざっくりとわかる分析
hayata_yamamoto
0
160
Make Questions to Solve Problems ~how to use science as tool~
hayata_yamamoto
0
30
Other Decks in Science
See All in Science
ultraArmをモニター提供してもらった話
miura55
0
190
Cross-Media Information Spaces and Architectures (CISA)
signer
PRO
3
29k
創薬における機械学習技術について
kanojikajino
13
4.3k
20分で分かる Human-in-the-Loop 機械学習におけるアノテーションとヒューマンコンピューターインタラクションの真髄
hurutoriya
4
2.3k
Iniciativas independentes de divulgação científica: o caso do Movimento #CiteMulheresNegras
taisso
0
210
Factorized Diffusion: Perceptual Illusions by Noise Decomposition
tomoaki0705
0
200
白金鉱業Meetup Vol.15 DMLによる条件付処置効果の推定_sotaroIZUMI_20240919
brainpadpr
1
480
Snowflake上でRを使う: RStudioセットアップとShinyアプリケーションのデプロイ
ktatsuya
0
410
The Incredible Machine: Developer Productivity and the Impact of AI
tomzimmermann
0
390
構造設計のための3D生成AI-最新の取り組みと今後の展開-
kojinishiguchi
0
550
【人工衛星開発】能見研究室紹介動画
02hattori11sat03
0
150
作業領域内の障害物を回避可能なバイナリマニピュレータの設計 / Design of binary manipulator avoiding obstacles in workspace
konakalab
0
160
Featured
See All Featured
4 Signs Your Business is Dying
shpigford
180
21k
What's in a price? How to price your products and services
michaelherold
243
12k
Docker and Python
trallard
40
3.1k
Practical Orchestrator
shlominoach
186
10k
Fashionably flexible responsive web design (full day workshop)
malarkey
405
65k
Six Lessons from altMBA
skipperchong
27
3.5k
How GitHub (no longer) Works
holman
310
140k
Embracing the Ebb and Flow
colly
84
4.5k
It's Worth the Effort
3n
183
27k
Why You Should Never Use an ORM
jnunemaker
PRO
54
9k
Stop Working from a Prison Cell
hatefulcrawdad
267
20k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
356
29k
Transcript
医療と機械学習とMRI Hayata Yamamoto
注意事項 • この資料は私個人の見解を示したものです。 所属する組織の意見を代表しません。 • 医療分野の知識については、 医療従事者から見ると至らない点がある可能性があります。
Agenda 1. 医療と機械学習 a. 医用画像解析を軸にして話します。 2. まとめ
医療と機械学習
Hayata Yamamoto (23) • 職業: Data Scientist @RareJob.inc • 経歴:
Sales -> ML eng. -> DS • 関心: 教育、ヘルスケア、医療 • Twitter: @hayata_yamamoto • 医療分野との関わり: ◦ sMRI T1の脳画像を見てました
http://www.ajnr.org/content/33/1/77
今日伝えたいこと • 医療と機械学習はとても面白い分野であること • データを分析する際には、高度な背景知識が求められること • データ分析と医療関係の知識を満遍なく習得して欲しい
医療とテクノロジーで何を思い浮かべますか?
たとえば • 電子カルテ • 遠隔診療 • 高度な医療機器 など
https://bit.ly/2rTquc5
わかること • メディカル市場は発展中 ◦ 日本が強みを発揮できる分野であるという調査もあります。 • スタートアップもたくさんいる • ウェアラブルとかも含めると、もっとたくさん会社がいそう
機械学習との関わり
現状 • 医療データの機械学習に取り組む研究者は割といます。 • 脳波から診断データ、MRI、CTなど材料はたくさんあります。 ◦ 画像認識 ◦ 自然言語処理などなど •
深層学習の定番は、医用画像のsegmentation。 ◦ Unet, Unet++とか
https://arxiv.org/pdf/1807.10165.pdf
MRIって知ってますか? • Wikipedia ◦ 核磁気共鳴画像法(かくじききょうめいがぞうほう、 英語: magnetic resonance imaging, MRI)とは、核磁気共鳴(nuclear
magnetic resonance, NMR)現象を利用して生体内の内部の情報を 画像にする方法である。 • CTとの違い ◦ 撮影時間 ▪ CTは約10分、MRIは約30分 ◦ 撮影方法の違い ▪ CTはX線、MRIは磁場の共鳴 ▪ 故に、MRIは被曝しない • 参考 ◦ http://www.kuki-med.jp/ctmri/ ◦ http://bit.ly/2UXhdi0
難しく、面白いところ • データ自体のドメイン知識がかなり必要 ◦ データによって、画像や信号の特徴が明確に異なる。 ▪ センサーデータ中心 ▪ 波形データ、2D, 3D,
4Dまである。 ▪ 画像の種類やピクセル値ごとに、移りやすい臓器や物質がある。 ◦ 階調処理、現像の処理が必要になることも。 ▪ ベンダーや取得時の環境によってデータに味がある ◦ データの見方がわからない ▪ 教師データがあってもいまいち素人には違いがわからないこともある。 ▪ 3Dデータだと、2D化する際の画像の切り方で見えない部分が発生する。 • 例えば、脳画像だとSagittal, Coronal, Axial
MRIの種類(一部) http://casemed.case.edu/clerkships/neurology/web%20neurorad/mri%20basics.htm
難しく、面白いところ • 前処理の知識 ◦ 正規化をしたりします。(ソフトウェア依存) ▪ 骨をとる、大きさを整える、など ▪ 情報の損失はいかほどか... ◦
正規化せずタスクをやることもできるが大変。←私がやってたこと ▪ 子どもと大人、男性と女性、頭の形でデータがめちゃくちゃ揺れる • データ数の少なさ ◦ そもそも多くの人は、MRIとか滅多に受けない ◦ さらに、症例の少ないデータは、正解データが本当に少ない ◦ 大きいデータの使用には、倫理審査など厳密な手続きが必要。
難しく、面白いところ • 説明責任の問題 ◦ 分類問題が予測できても、原因についての考察ができないとダメな場合がある。 ▪ LinearSVCはよく使われてる印象。係数が取れるし。 ◦ 業務効率化など、厳密な説明能力を問われない領域とは機械学習の相性が良さそう。 ◦
確率の揺らぎはどうする?(学習時の塩梅によってクラス分類が変わる可能性) • ツールに対する理解 ◦ SPM, FreeSuferなど ◦ 典型的な分析はかなりまかなえる。 ▪ 何をやってるかの理解は必要 ◦ 生データを取得した際には、既存のソフトウェアをうまく使いながら分析する必要がある ◦ 1サンプルのデータ量が大きくなるケースでは、メモリをうまく使うプログラミングも必要
要は、めっちゃいろんな知識いります。
医療ドメインとテクノロジーどちらもわかる人材が重要
ドメインの知識と機械学習は両輪
望ましいスキルセット • 医療分野に対する知見 ◦ データ生成過程やデータに対する着眼点を理解するため ◦ 着眼点から意義のあるテーマを見出すため • テクノロジーに対する知見 ◦
人がやっている思考プロセスを数学的に再現するため ◦ 実際にデータを加工して、実験を行うため もちろん、どちらかだけでも取り組むことはできる。
習得の難しさ 医療のドメイン知識 > プログラミングや機械学習
医療知識を習得する • 学習機会を得にくい • 習得までに時間がかかる ◦ 一朝一夕が難しい • 実際に使う場面が少ない テクノロジーを習得する
• 工学系学部ならおおよそ勉強できる • MOOCs, ブログなどで自学できる ◦ コピペでも最初はどうにかなる • 実際に使う場面をたくさん作れる ◦ Kaggleとか
問題設定の難しさ • タスク自体の特性をよく理解する必要性 ◦ 問題が解ければ良いのか ◦ 問題が解けた後に説明する必要もあるのか • 自力のアノテーションは、知識がないと難しい ◦
医用画像のマスク作成などは、お医者さんが日常的にやってる業務 • 分析したいテーマにそぐうデータが存在するか ◦ クローズドのデータもある(審査が必要) • できる限り実現可能なタスクにできるか ◦ 検出の難しさや、クラス分けの難しさ
医療の知識があって、データ分析をすると最強
まとめ • 医療 x Techはすごく面白く、盛り上がってる分野です。 • 医療データを扱う際には必要なドメイン知識がかなりあります。 • 医療の知識を持った上で、テクノロジーを使える人材が重要です。
ありがとうございました!