Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
医療と機械学習とMRI
Search
hayata-yamamoto
April 13, 2019
Science
0
250
医療と機械学習とMRI
発表で使いました
#AIMS
hayata-yamamoto
April 13, 2019
Tweet
Share
More Decks by hayata-yamamoto
See All by hayata-yamamoto
生成AI動向まとめ 2025年7月
hayata_yamamoto
1
54
テック系起業家のための 会計入門 数字を味方につける経営ガイド
hayata_yamamoto
0
38
バランスト・スコアカード(BSC)
hayata_yamamoto
0
34
データ同化入門
hayata_yamamoto
0
47
中小企業のための 行政デジタルID活用ガイド
hayata_yamamoto
0
37
AIエージェントにおける評価指標と評価方法:本番環境での包括的検証戦略
hayata_yamamoto
0
77
統計的意思決定論の入門
hayata_yamamoto
0
130
コンテキストエンジニアリング入門
hayata_yamamoto
0
190
困難は分割せよ。既存のサービスにナレッジベースなAI駆動開発を導入していくための一つの方略
hayata_yamamoto
0
200
Other Decks in Science
See All in Science
KH Coderチュートリアル(スライド版)
koichih
1
58k
良書紹介04_生命科学の実験デザイン
bunnchinn3
0
120
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
PRO
0
140
Collective Predictive Coding as a Unified Theory for the Socio-Cognitive Human Minds
tanichu
0
160
サイコロで理解する原子核崩壊と拡散現象 〜単純化されたモデルで本質を理解する〜
syotasasaki593876
0
150
Cross-Media Technologies, Information Science and Human-Information Interaction
signer
PRO
3
32k
安心・効率的な医療現場の実現へ ~オンプレAI & ノーコードワークフローで進める業務改革~
siyoo
0
460
[Paper Introduction] From Bytes to Ideas:Language Modeling with Autoregressive U-Nets
haruumiomoto
0
200
機械学習 - SVM
trycycle
PRO
1
980
Algorithmic Aspects of Quiver Representations
tasusu
0
190
中央大学AI・データサイエンスセンター 2025年第6回イブニングセミナー 『知能とはなにか ヒトとAIのあいだ』
tagtag
PRO
0
120
MCMCのR-hatは分散分析である
moricup
0
590
Featured
See All Featured
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.9k
Making the Leap to Tech Lead
cromwellryan
135
9.7k
SERP Conf. Vienna - Web Accessibility: Optimizing for Inclusivity and SEO
sarafernandez
1
1.3k
Conquering PDFs: document understanding beyond plain text
inesmontani
PRO
4
2.3k
Mind Mapping
helmedeiros
PRO
0
90
The Illustrated Guide to Node.js - THAT Conference 2024
reverentgeek
0
260
What's in a price? How to price your products and services
michaelherold
247
13k
How to Grow Your eCommerce with AI & Automation
katarinadahlin
PRO
1
110
So, you think you're a good person
axbom
PRO
2
1.9k
The innovator’s Mindset - Leading Through an Era of Exponential Change - McGill University 2025
jdejongh
PRO
1
94
Kristin Tynski - Automating Marketing Tasks With AI
techseoconnect
PRO
0
150
Fireside Chat
paigeccino
41
3.8k
Transcript
医療と機械学習とMRI Hayata Yamamoto
注意事項 • この資料は私個人の見解を示したものです。 所属する組織の意見を代表しません。 • 医療分野の知識については、 医療従事者から見ると至らない点がある可能性があります。
Agenda 1. 医療と機械学習 a. 医用画像解析を軸にして話します。 2. まとめ
医療と機械学習
Hayata Yamamoto (23) • 職業: Data Scientist @RareJob.inc • 経歴:
Sales -> ML eng. -> DS • 関心: 教育、ヘルスケア、医療 • Twitter: @hayata_yamamoto • 医療分野との関わり: ◦ sMRI T1の脳画像を見てました
http://www.ajnr.org/content/33/1/77
今日伝えたいこと • 医療と機械学習はとても面白い分野であること • データを分析する際には、高度な背景知識が求められること • データ分析と医療関係の知識を満遍なく習得して欲しい
医療とテクノロジーで何を思い浮かべますか?
たとえば • 電子カルテ • 遠隔診療 • 高度な医療機器 など
https://bit.ly/2rTquc5
わかること • メディカル市場は発展中 ◦ 日本が強みを発揮できる分野であるという調査もあります。 • スタートアップもたくさんいる • ウェアラブルとかも含めると、もっとたくさん会社がいそう
機械学習との関わり
現状 • 医療データの機械学習に取り組む研究者は割といます。 • 脳波から診断データ、MRI、CTなど材料はたくさんあります。 ◦ 画像認識 ◦ 自然言語処理などなど •
深層学習の定番は、医用画像のsegmentation。 ◦ Unet, Unet++とか
https://arxiv.org/pdf/1807.10165.pdf
MRIって知ってますか? • Wikipedia ◦ 核磁気共鳴画像法(かくじききょうめいがぞうほう、 英語: magnetic resonance imaging, MRI)とは、核磁気共鳴(nuclear
magnetic resonance, NMR)現象を利用して生体内の内部の情報を 画像にする方法である。 • CTとの違い ◦ 撮影時間 ▪ CTは約10分、MRIは約30分 ◦ 撮影方法の違い ▪ CTはX線、MRIは磁場の共鳴 ▪ 故に、MRIは被曝しない • 参考 ◦ http://www.kuki-med.jp/ctmri/ ◦ http://bit.ly/2UXhdi0
難しく、面白いところ • データ自体のドメイン知識がかなり必要 ◦ データによって、画像や信号の特徴が明確に異なる。 ▪ センサーデータ中心 ▪ 波形データ、2D, 3D,
4Dまである。 ▪ 画像の種類やピクセル値ごとに、移りやすい臓器や物質がある。 ◦ 階調処理、現像の処理が必要になることも。 ▪ ベンダーや取得時の環境によってデータに味がある ◦ データの見方がわからない ▪ 教師データがあってもいまいち素人には違いがわからないこともある。 ▪ 3Dデータだと、2D化する際の画像の切り方で見えない部分が発生する。 • 例えば、脳画像だとSagittal, Coronal, Axial
MRIの種類(一部) http://casemed.case.edu/clerkships/neurology/web%20neurorad/mri%20basics.htm
難しく、面白いところ • 前処理の知識 ◦ 正規化をしたりします。(ソフトウェア依存) ▪ 骨をとる、大きさを整える、など ▪ 情報の損失はいかほどか... ◦
正規化せずタスクをやることもできるが大変。←私がやってたこと ▪ 子どもと大人、男性と女性、頭の形でデータがめちゃくちゃ揺れる • データ数の少なさ ◦ そもそも多くの人は、MRIとか滅多に受けない ◦ さらに、症例の少ないデータは、正解データが本当に少ない ◦ 大きいデータの使用には、倫理審査など厳密な手続きが必要。
難しく、面白いところ • 説明責任の問題 ◦ 分類問題が予測できても、原因についての考察ができないとダメな場合がある。 ▪ LinearSVCはよく使われてる印象。係数が取れるし。 ◦ 業務効率化など、厳密な説明能力を問われない領域とは機械学習の相性が良さそう。 ◦
確率の揺らぎはどうする?(学習時の塩梅によってクラス分類が変わる可能性) • ツールに対する理解 ◦ SPM, FreeSuferなど ◦ 典型的な分析はかなりまかなえる。 ▪ 何をやってるかの理解は必要 ◦ 生データを取得した際には、既存のソフトウェアをうまく使いながら分析する必要がある ◦ 1サンプルのデータ量が大きくなるケースでは、メモリをうまく使うプログラミングも必要
要は、めっちゃいろんな知識いります。
医療ドメインとテクノロジーどちらもわかる人材が重要
ドメインの知識と機械学習は両輪
望ましいスキルセット • 医療分野に対する知見 ◦ データ生成過程やデータに対する着眼点を理解するため ◦ 着眼点から意義のあるテーマを見出すため • テクノロジーに対する知見 ◦
人がやっている思考プロセスを数学的に再現するため ◦ 実際にデータを加工して、実験を行うため もちろん、どちらかだけでも取り組むことはできる。
習得の難しさ 医療のドメイン知識 > プログラミングや機械学習
医療知識を習得する • 学習機会を得にくい • 習得までに時間がかかる ◦ 一朝一夕が難しい • 実際に使う場面が少ない テクノロジーを習得する
• 工学系学部ならおおよそ勉強できる • MOOCs, ブログなどで自学できる ◦ コピペでも最初はどうにかなる • 実際に使う場面をたくさん作れる ◦ Kaggleとか
問題設定の難しさ • タスク自体の特性をよく理解する必要性 ◦ 問題が解ければ良いのか ◦ 問題が解けた後に説明する必要もあるのか • 自力のアノテーションは、知識がないと難しい ◦
医用画像のマスク作成などは、お医者さんが日常的にやってる業務 • 分析したいテーマにそぐうデータが存在するか ◦ クローズドのデータもある(審査が必要) • できる限り実現可能なタスクにできるか ◦ 検出の難しさや、クラス分けの難しさ
医療の知識があって、データ分析をすると最強
まとめ • 医療 x Techはすごく面白く、盛り上がってる分野です。 • 医療データを扱う際には必要なドメイン知識がかなりあります。 • 医療の知識を持った上で、テクノロジーを使える人材が重要です。
ありがとうございました!