Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
DL in MRI
Search
Tsung-Yung Lu
October 29, 2019
0
88
DL in MRI
Application of deep learning in MRI
Tsung-Yung Lu
October 29, 2019
Tweet
Share
More Decks by Tsung-Yung Lu
See All by Tsung-Yung Lu
DICOM RT Dose
higumalu
0
15
The GEMPix detector
higumalu
0
28
Respiratory Gating for Radiotherapy
higumalu
0
530
Cholescintigraphy
higumalu
0
120
Cardiac CT
higumalu
0
210
Class Report of PETCT Model
higumalu
0
48
Generate Abnor Echo Image
higumalu
0
64
淺談影像處理
higumalu
0
92
Tc99m
higumalu
0
130
Featured
See All Featured
Testing 201, or: Great Expectations
jmmastey
45
7.7k
Balancing Empowerment & Direction
lara
3
630
Making Projects Easy
brettharned
117
6.4k
Git: the NoSQL Database
bkeepers
PRO
431
66k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
113
20k
The Language of Interfaces
destraynor
161
25k
The Power of CSS Pseudo Elements
geoffreycrofte
77
6k
Designing for Performance
lara
610
69k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
Done Done
chrislema
185
16k
Scaling GitHub
holman
463
140k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
850
Transcript
Deep Learning In medical imaging focusing on MRI LTY,2019 1
OVERVIEW ► Machine Learning ► Data Acquisition ► Higher-level applications
of DL in MRI ► Challenges 2
Machine Learning 3
Machine Learning ► Artificial neural networks ► Deep learning ►
Convolutional neural networks ► Generative adversarial network 4
Artificial neural networks 5
Deep learning 6
Convolutional neural networks 7
Generative adversarial network 8
9
Data Acquisition 10
Data Acquisition ► Image reconstruction ► Image restoration ► Image
Super-Resolution (SR) ► Image synthesis 11
Image reconstruction Visualization results of intermediate steps during the iterations
of a reconstruction. (a) Undersampled image by acceleration factor 9 (b) Ground Truth (c-l) Results from intermediate steps 1 to 10 in a reconstruction process CRNN Convolutional Recurrent Neural Networks for Dynamic MR Image Reconstruction
Image reconstruction • The comparison of reconstructions on spatial dimension
with their error maps. • (a) Ground Truth • (b) Undersampled image by acceleration factor 9 • (c,d) Proposed-B • (e,f) 3D CNN • (g,h) 3D CNN-S • (i,j) k-t FOCUSS • (k,l) k-t SLR
Image restoration : Denoising 14 Deep Learning Approaches for Detection
and Removal of Ghosting Artifacts in MR Spectroscopy
Image SR ► Super Resolution GAN (SRGAN) ► Network ►
Discriminator : HR image (T/F) ► Generator : LR→HR 15
Image synthesis : DCGAN • Data augmentation • Network •
Discriminator : Real image • Generator : Synthetic image
Image synthesis : CycleGAN 17 T1 → T2 T2 →
T1
Higher-level Applications of DL in MRI 18
Higher-level Applications of DL in MRI ► Image segmentation ►
Prediction 19
Image segmentation ► Whole Brain ► Polycystic Kidneys 20
SLANT : Whole Brain Segmentation 21 3D Whole Brain Segmentation
using Spatially Localized Atlas Network Tiles
22 3D Whole Brain Segmentation using Spatially Localized Atlas Network
Tiles
Automated Segmentation of Polycystic Kidneys 23 Performance of an Artificial
Multi-observer Deep Neural Network for Fully Automated Segmentation of Polycystic Kidneys https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5537093/
Prediction ► Brain ► Kidney ► Prostate ► Spine 24
Brain ► Brain extraction ► Functional connectomes ► Structural connectomes
► Brain age ► Alzheimer’s disease ► Vascular lesions ► Identification of MRI contrast ► Meningioma ► Glioma ► Multiple sclerosis 25
Kidney ► Abdominal organs ► Cyst segmentation ► Renal transplant
26
Prostate ► Cancer 27
Spine ► Vertebrae labeling ► Intervertebral disc localization ► Lumbal
neural forminal stenosis (LNFS) 28
DeepSPINE 29
LNFS 30 Automated Pathogenesis-Based Diagnosis of Lumbar Neural Foraminal Stenosis
via Deep Multiscale Multitask Learning
Challenges 31
Challenges ► Medical imaging data sets and repositories ► Medical
imaging competitions ► Data ► Interpretability 32
Data Sets and Repositories ► [TCIA] ► “Large” ► cancer
imaging ► [OpenNeuro] ► brain images ► 168 studies ► 4,718 participants ► [UK Biobank] ► 15,000 participants ► [ADNI] ► Alzheimer’s disease neuroimaging ► 2,000 participants 33
Competitions ► [Grand Challenges] ► Almost all of challenges ►
[Kaggle] 34
REFERENCE ► Alexander SelvikvågLundervold, al. An overview of deep learning
in medical imaging focusing on MRI, Zeitschrift für Medizinische Physik Volume 29, Issue 2, May 2019, Pages 102-127. 35
Thanks! 36
[email protected]
https://github.com/higumalu
Q&A 37