Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Generate Abnor Echo Image
Search
Tsung-Yung Lu
September 28, 2018
Research
0
48
Generate Abnor Echo Image
2018SMIRS內容
Tsung-Yung Lu
September 28, 2018
Tweet
Share
More Decks by Tsung-Yung Lu
See All by Tsung-Yung Lu
The GEMPix detector
higumalu
0
16
Respiratory Gating for Radiotherapy
higumalu
0
420
Cholescintigraphy
higumalu
0
110
DL in MRI
higumalu
0
81
Cardiac CT
higumalu
0
170
Class Report of PETCT Model
higumalu
0
37
淺談影像處理
higumalu
0
75
Tc99m
higumalu
0
120
Other Decks in Research
See All in Research
Tietovuoto Social Design Agency (SDA) -trollitehtaasta
hponka
0
3k
新規のC言語処理系を実装することによる 組込みシステム研究にもたらす価値 についての考察
zacky1972
1
270
Zipf 白色化:タイプとトークンの区別がもたらす良質な埋め込み空間と損失関数
eumesy
PRO
8
1k
打率7割を実現する、プロダクトディスカバリーの7つの極意(pmconf2024)
geshi0820
0
130
さんかくのテスト.pdf
sankaku0724
0
520
医療支援AI開発における臨床と情報学の連携を円滑に進めるために
moda0
0
120
Introducing Research Units of Matsuo-Iwasawa Laboratory
matsuolab
0
1.3k
Large Vision Language Model (LVLM) に関する最新知見まとめ (Part 1)
onely7
22
4.8k
Weekly AI Agents News! 11月号 プロダクト/ニュースのアーカイブ
masatoto
0
200
20240918 交通くまもとーく 未来の鉄道網編(太田恒平)
trafficbrain
0
350
Weekly AI Agents News! 9月号 論文のアーカイブ
masatoto
1
150
129 2 th
0325
0
250
Featured
See All Featured
Optimizing for Happiness
mojombo
376
70k
Fontdeck: Realign not Redesign
paulrobertlloyd
82
5.3k
Testing 201, or: Great Expectations
jmmastey
40
7.1k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
111
49k
How to Think Like a Performance Engineer
csswizardry
22
1.2k
Git: the NoSQL Database
bkeepers
PRO
427
64k
The World Runs on Bad Software
bkeepers
PRO
65
11k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
2
170
Designing Experiences People Love
moore
138
23k
The Invisible Side of Design
smashingmag
298
50k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Facilitating Awesome Meetings
lara
50
6.1k
Transcript
生成非正常腎臟超音波影像 提升分類準確性之研究 假體實驗 報告者:義守大學 醫學影像暨放射科學系 盧宗詠 2018/09/29
2 <over view> ➢ 研究動機 < motive> ➢ 目的 <purpose>
➢ 材料與方法 < method> ➢ 結果 <result> ➢ 結論與討論 <conclusion>
3 <研究動機>
4
5 “NORMAL”
6 <目的>
7 <purpose> ➢ 解決影像資料集過少的問題 ➢ 比較人為產生的非正常影像 與實際非正常影像 經由神經網路訓練後的優缺分析 ➢ 探討人為加工的醫學影像是否有助於診斷輔
助系統的開發
8 <材料與方法>
9 < materials > Sonosite 180+ 手提式超音波儀 C60
(5-2MHz) Transducer US-1B ABDFAN腹部超音波假體 造影角度不限,深度為12與15公分之 右腎影像,總計蒐集1400張 (合成影像總計生成1600張)
10 < method> 將影像選取ROI並且正規化 從原始影像資料集隨機取出部分影像並透 過自行編寫的matlab程式加工成非正常影像 建立四組資料集以便於進行訓練與驗證
透過卷積神經網絡建立三種判斷模型 CNN模型具有三個2D卷積層(濾波數分別為32、64、128個, 卷積核大小5*5、3*3、3*3)、三個激活層(其激活函數皆使 用ReLU、三個池化層(池化窗口大小皆為3,3) 藉由驗證資料集比較三種模型的差異 繪製分析圖以方便觀察結果
11
12 < method_01.bmp> 1400
13 < method_02.bmp > 1400 NORMAL X1000 ABNORMAL X400
14 < method_03.bmp> NORMAL X1000 X1600
15 < method_04_train_data.bmp> 1.正常 +非正常 (1100) 2.正常 +合成影像 (2300) 3.正常
+(非正常+合成) (2600) NORMAL X800 ABNORMAL X300 NORMAL X800 ABNORMAL X1500 NORMAL X800 ABNORMAL X1800
16 < method_05_validation_data.bmp> NORMAL 200 ABNORMAL (100+100) X400 validation
17 < method_06_train_CNN.py>
18 < method _07_predict_CNN.py > softmax() “NORMAL” “ABNORMAL”
19 < method_08 _ROC.py > ➢ TP (true positive):分類為非正常,實際上為非正常 ➢
TN (true negative):分類為正常實際上為正常 ➢ FP (false positive):分類為非正常,實際上為正常 ➢ FN (false negative):分類為正常,實際上為非正常
20 < method_09_ROC.py > ➢ 準確度,accuracy: 分類正確的比率 ➢ 敏感度, sensitivity:
非正常被分類成非正常的比率(有病判有病) ➢ 錯誤命中率: 正常被分類成正常的比率(沒病判沒病) ➢ 特異度, specificity : 正常被分類為非正常的比率(沒病判有病) ➢ 陽性預測值 :被分類為非正常,實際上為非正常的比率 ➢ F-measure(F度量,F1) :一種同時兼顧查準率(precision)與查全率 (recall)的度量方式,應用於資訊檢索(information retrieval)領域 的成效評估
21 < method_10_ROC.py> ➢ TPR(敏感度, sensitivity) = TP / P
➢ FPR(錯誤命中率) = FP / N ➢ F-measure(F度量,F1) = (2 x TPR x PPV) / (TPR + PPV)
22 <結果>
23 < result> ➢ F-measure ➢ ROC curve with AUC
(receiver operating characteristic curve)
24 < result02.bmp> nor+abnor nor+syn nor+(abnor+syn) True Positive 116 168
198 True Negative 198 157 158 False Positive 2 43 42 False Negative 84 32 2 accuracy 0.785 0.8125 0.89 sensitivity 0.58 0.84 0.99 specificity 0.99 0.785 0.79 false alarm rate 0.01 0.215 0.21 F-measure 0.7295 0.8175 0.9
25 < result01.bmp> nor+abnor nor+syn nor +(abnor+syn) TPR 0.58 0.84
0.99 FPR 0.01 0.215 0.21
26 < result03_ROC.bmp>
27 <結論與討論>
28 < conclusion > ➢ 生成影像能夠有效的解決非正常影像資料 量不足的問題 ➢ 生成影像作為訓練資料可以提升分類模型 的準確性
29 < discussion > ➢ 使用更為複雜的神經網路或者不同的影像生成 方式是否能使準確度提升? ➢ 若生成影像由專業的臨床醫師設計是否能使準 確度更高?
➢ 是否有更好的辦法能夠有效的提升預測模型的 準確度?
THANKS FOR LISTENING github.com/higumalu
[email protected]
Q & A