Upgrade to Pro — share decks privately, control downloads, hide ads and more …

The Communication Complexity of Gap Hamming Distance

にまび
September 30, 2016

The Communication Complexity of Gap Hamming Distance

にまび

September 30, 2016
Tweet

More Decks by にまび

Other Decks in Research

Transcript

  1.  Let = /10 . We can find 1 ,⋯

    , ∈ ′ as Lemma 1.  Let ′ = ൛ ∈ |Pr∈[] , ≤ /4 ≥ 1 − 2016/9/30 16
  2. ORT = Ω  Let be the uniform distribution over

    −1,1 × −1,1 .  Lemma 3 guarantees that ∩ ORT −1 1 > ≥ ∩ ORT −1 −1 for any rectangle with > 2−, where , > 0 are some small constants.  ORT −1 −1 = Θ 1 2016/9/30 18
  3. ORT −1 −1 = Θ 1  Fix any ∈

    −1,1 .  Recall that , = − 2H ,  When is close to /2, it is true that ≥ 2 , where is some constant.  # such that , ≤ 8 = σ = 2 − 8 2 + 8 ≥ 4 ∙ 2 = 2 4 . 2016/9/30 19
  4. ORT = Ω  Let be the uniform distribution over

    −1,1 × −1,1 .  Lemma 3 guarantees that ∩ ORT −1 1 > ≥ ∩ ORT −1 −1 for any rectangle with > 2−, where , > 0 are some small constants.  ORT −1 −1 = Θ 1  By the corrupted bound [2], ORT ≥ log 2 ORT −1 −1 − 2016/9/30 20
  5. Proof of Lemma 3  Let = for short. 

    σ=1 ≤ σ=1 2 1 2 ≤ .  σ=+1 ≤ rank − +1  Let = σ be a SVD of , by definition  , ෩ = σ , ෩ = σ ෩ ≤ 1 ෩ σ 2016/9/30 21
  6. Proof of Lemma 3  σ=1 ≤ σ=1 2 1

    2 ≤ .  σ=+1 ≤ rank − +1  Let = σ be a SVD of , by definition  , ෩ = σ , ෩ = σ ෩ ≤ 1 ෩ σ  σ ≥ , ෩ /1 ෩ 2016/9/30 22
  7. Proof of Lemma 3  σ=1 ≤ σ=1 2 1

    2 ≤ .  σ=+1 ≤ rank − +1  σ ≥ , ෩ /1 ෩  ⟹ + rank − +1 ≥ , ෩ /1 ෩  ⟹ +1 ≥ , ෩ 1 ෩ − / rank − 2016/9/30 23
  8. Reference 1) Alon, Noga, and Joel H. Spencer. The probabilistic

    method. John Wiley & Sons, 2004. 2) Beame, Paul, et al. "A strong direct product theorem for corruption and the multiparty communication complexity of disjointness." Computational Complexity 15.4 (2006): 391-432. 3) Chakrabarti, Amit, and Oded Regev. "An optimal lower bound on the communication complexity of gap-hamming-distance." SIAM Journal on Computing 41.5 (2012): 1299-1317. 4) Sherstov, Alexander A. "The Communication Complexity of Gap Hamming Distance." Theory of Computing 8.1 (2012): 197-208. 5) Talagrand, Michel. "Concentration of measure and isoperimetric inequalities in product spaces." Publications Mathématiques de l'Institut des Hautes Etudes Scientifiques 81.1 (1995): 73-205. 6) Vidick, Thomas. "A concentration inequality for the overlap of a vector on a large set." (2011). 2016/9/30 24