Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
基盤モデルのアーキテクチャを改造してみよう - 時系列基盤モデルのマルチモーダル拡張事例の紹介 -
Search
himura467
November 13, 2025
1
170
基盤モデルのアーキテクチャを改造してみよう - 時系列基盤モデルのマルチモーダル拡張事例の紹介 -
YAPC::Fukuoka 2025 における LT の資料です
himura467
November 13, 2025
Tweet
Share
More Decks by himura467
See All by himura467
Python アプリケーションの裏側とその機序 -WSGI, ASGI 編-
himura
0
70
人生における期待効用の最大化について考える
himura
0
96
CA_kube-scheduler
himura
0
10
Improving Language Understanding by Generative Pre-Training
himura
0
76
Featured
See All Featured
Building an army of robots
kneath
306
46k
How to Ace a Technical Interview
jacobian
280
24k
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
310
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.2k
Facilitating Awesome Meetings
lara
57
6.6k
The Straight Up "How To Draw Better" Workshop
denniskardys
239
140k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.1k
Site-Speed That Sticks
csswizardry
13
960
Done Done
chrislema
186
16k
Agile that works and the tools we love
rasmusluckow
331
21k
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8k
The Power of CSS Pseudo Elements
geoffreycrofte
80
6k
Transcript
IJNVSB ج൫ϞσϧͷΞʔΩςΫνϟΛվͯ͠ΈΑ͏ ࣌ܥྻج൫ϞσϧͷϚϧνϞʔμϧ֦ுࣄྫͷհ 1
ࣗݾհ Self Introduction ઃָ࿕ਓ ژେֶେֶӃใֶݚڀՊम࢜ɻ ػցֶशΛ༻͍ͨ࣌ܥྻ༧ଌʹؔ͢ΔݚڀΛ͍ͯ͠·͢ɻ ҰਓΒ͠ྺ̑ɻ ཛͰͱ͡Δܥͷྉཧ͕͖ɻ ํԻஒɻ 2
Akito Shitara 5ZQF4DSJQU 1ZUIPO 1FSM Α͘ॻ͘ݴޠ Frequently used programming languages ;JH GitHub: @himura467 X: @himuhimu467
όઌͷհ Basaki Introduction ϥΠϑΠζςοΫ 3 Life is Tech! தߴੜʹ ϓϩάϥϛϯάΛ
ڭ͑ΔεΫʔϧͷ ϝϯλʔΛ͍ͯ͠·͢
Ն In the summer of 2024 5 4 ੜెͷ༧ଌΛ ߦ͍͍ͨ
Ն In the summer of 2024 5 5 ྲྀߦΓͷਂֶशʹ σʔλ͕ඞཁෆՄܽ
Ն In the summer of 2024 5 6 ͕ɺσʔλ͕ͳ͍ ྲྀߦΓͷਂֶशʹ
σʔλ͕ඞཁෆՄܽ
Ն In the summer of 2024 5 7 Ͳ͏͠Α͏ʜ
ٹੈओݱΔ The savior has arrived 5 8 ࣌ܥྻج൫Ϟσϧ a:P
ͪͳΈʹ By the way 5 9 ʮ࣌ܥྻج൫Ϟσϧʯ ฉ͍ͨ͜ͱ͋Δํʔʁ aʔ͍
5 10 ຊͰ࠷ߴ͍ࢁ ࢜ࢁ Common Crawl GitHub Wikipedia େنݴޠϞσϧͷ֓ཁ About
the concept of Large Language Models
5 11 ࣌ܥྻج൫Ϟσϧͷ֓ཁ About the concept of Time Series Foundation
Model Earthquake Data Medical Data Temperature աڈͷגՁͷਪҠ ະདྷͷגՁ
5 12 ࣌ܥྻج൫Ϟσϧͷ֓ཁ About the concept of Time Series Foundation
Model Earthquake Data Medical Data Temperature աڈͷגՁͷਪҠ ະདྷͷגՁ ৽نͷυϝΠϯʹରͯ͠΄Ͳ΄Ͳͷ༧ଌΛͯ͘͠ΕΔ
5 13 ࣌ܥྻج൫ϞσϧͳΒ σʔλ͕গͳͯ͘༧ଌՄೳ ࣌ܥྻج൫Ϟσϧͷ֓ཁ About the concept of Time
Series Foundation Model
࣌ܥྻج൫ϞσϧΛࢼͯ͠ΈΔ Try Time Series Foundation Model 5 14 όΠτઌͷσʔλͰ ϑΝΠϯνϡʔχϯάͯ͠
ަࠩݕূͯ͠ΈΔ
ަࠩݕূͷ݁Ռ Cross-Validation Results 5 15 ϥϯμϜʹճ࣮ߦͨ݁͠ՌͰ͢ "3*."Ϟσϧͷύϥϝʔλ࠷దԽ͞Ε͍ͯ·ͤΜ σʔλͳͲॻ͖͖Ε͍ͯͳ͍͕݅ଞʹͨ͘͞Μ͋Γ·͢ 'JOFUVOFE 0SJHJOBM5JNFT'.
"3*." .4& ."&
5 16 ैདྷख๏Λ্ճΔਫ਼Λ ग़͢͜ͱ͕Ͱ͖ͨ ަࠩݕূͷ݁Ռ Cross-Validation Results
5 17 ͜͜·Ͱ͕લ࠲Ͱ͢
͔͜͜Β͕ຊͰ͢ The main discussion begins 5 18 ҰຊདྷͷతΛࢥ͍ग़͢
ຊདྷͷత The original purpose 5 19 ੜెͷ༧ଌΛ ߦ͍͍ͨ
5 20 ੜెͷ༧ଌΛ ߦ͍͍ͨ Λࢭ͍ͨ͠ ຊདྷͷత The original purpose
࣮ݧ࣌ʹσʔλ͔ΒಘΒΕͨࣔࠦ Insights gleaned from data 5 21 ग़੮͕Ұམͪ࢝ΊΔͱ Βͳ͍͕ͪ ܽ੮͍ͯ͠ΔؒʹίϛϡχςΟ͕ৢ͞Εͯ͠·͍ɺૄ֎ײΛײͯ͡͠·ͬͨΓʜʁ
ग़੮ͷมԽ Πϝʔδ Attendance Trend Graph 5 22 ग़੮
݄ ݄ ݄ ݄ ݄ ݄ ݄ ݄ ݄ ݄ ݄
5 23 ग़੮ ݄ ݄
݄ ݄ ݄ ݄ ݄ ݄ ݄ ݄ ݄ खΕ ग़੮ͷมԽ Πϝʔδ Attendance Trend Graph
5 24 ग़੮ ݄ ݄
݄ ݄ ݄ ݄ ݄ ݄ ݄ ݄ ݄ ͜͜ͰΞϥʔτΛग़ͯ͠΄͍͠ ग़੮ͷมԽ Πϝʔδ Attendance Trend Graph
࣌ܥྻ༧ଌͷݶք Limitations of Time Series Forecasting 5 25 ͍͘Βਫ਼্͕͕ͬͯ ࣌ܥྻͷΈΛઆ໌มͱͨ͠
༧ଌͰݪཧతʹ࣮ݱෆՄೳ
࣌ܥྻج൫Ϟσϧͷ֦ு Extending Time-Series Foundation Models 26
࣌ܥྻج൫Ϟσϧ 5JNFT'. ͷߏ The architecture of TimesFM 5 27 ࣌ܥྻ
݄ ݄ Residual Block Vector MSE: Loss Function ͜͜Λֶश͢Δ Stacked Transformer Ref: Abhimanyu Das, Weihao Kong, Rajat Sen, Yichen Zhou. A decoder-only foundation model for time-series forecasting. ICML 2024
ϚϧνϞʔμϧ֦ுͯ͠ΈΔ Try multi-modal extension 5 28 ʮࠓ݄ؤுͬͨʂʯ ʮਐḿඍົ͔ʜʯ ςΩετܥྻ ࣌ܥྻ
݄ ݄ Residual Block Vector Fusion Module MSE: Loss Function ͜͜Λֶश͢Δ Vector Text Encoder Stacked Transformer https://github.com/himura467/multimodal-timesfm
5 29 ϥϯμϜʹճ࣮ߦͨ݁͠ՌͰ͢ "3*."Ϟσϧͷύϥϝʔλ࠷దԽ͞Ε͍ͯ·ͤΜ σʔλͳͲॻ͖͖Ε͍ͯͳ͍͕݅ଞʹͨ͘͞Μ͋Γ·͢ .VMUJNPEBM 'JOFUVOFE 0SJHJOBM5JNFT'. "3*." .4&
."& ަࠩݕূͷ݁Ռ Cross-Validation Results
5 30 ఔʑʹΕ͍ͯͦ͏ ަࠩݕূͷ݁Ռ Cross-Validation Results .VMUJNPEBMج൫ϞσϧࣗମͷύϥϝʔλΛౚ݁ͨ͠ঢ়ଶͰਫ਼ͷ্͕ݟΒΕ͍ͯΔ
5 31 ࣌ܥྻج൫Ϟσϧͷັྗ The Appeal of Time-Series Foundation Models ͍ͭઌ݄ʹ"NB[POͷ࣌ܥྻج൫Ϟσϧ͕
ϝδϟʔΞοϓσʔτΛܴ͑ΔͳͲ ਐ݄าͰਐԽ͍ͯ͠ΔݚڀྖҬ
5 32 ʒ Conclusion l#FU࣌ܥྻج൫Ϟσϧz ͯ͠Έ·ͤΜ͔ʁ