Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Tensorflow for Android Developers
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
Joe Birch
March 26, 2018
Technology
3
280
Tensorflow for Android Developers
Joe Birch
March 26, 2018
Tweet
Share
More Decks by Joe Birch
See All by Joe Birch
Learning to play guitar with Actions on Google
hitherejoe
1
100
Making Change as an Ally
hitherejoe
1
490
Learning to play the guitar with Actions on Google
hitherejoe
0
150
For Optimists, our UI is pretty Pessimistic
hitherejoe
4
2.9k
Android Things: Building for the IoT
hitherejoe
2
190
Getting Clean, Keeping Lean
hitherejoe
10
700
Android TV: Building Apps with Google’s Leanback Library
hitherejoe
1
1.1k
Building Beautiful Apps with the Design Support Library
hitherejoe
3
260
Other Decks in Technology
See All in Technology
Embedded SREの終わりを設計する 「なんとなく」から計画的な自立支援へ
sansantech
PRO
2
1.9k
インフラエンジニア必見!Kubernetesを用いたクラウドネイティブ設計ポイント大全
daitak
0
290
データの整合性を保ちたいだけなんだ
shoheimitani
6
2.4k
制約が導く迷わない設計 〜 信頼性と運用性を両立するマイナンバー管理システムの実践 〜
bwkw
2
810
(金融庁共催)第4回金融データ活用チャレンジ勉強会資料
takumimukaiyama
0
110
OCI Database Management サービス詳細
oracle4engineer
PRO
1
7.3k
Context Engineeringの取り組み
nutslove
0
240
30万人の同時アクセスに耐えたい!新サービスの盤石なリリースを支える負荷試験 / SRE Kaigi 2026
genda
1
150
分析画面のクリック操作をそのままコード化 ! エンジニアとビジネスユーザーが共存するAI-ReadyなBI基盤
ikumi
0
130
フルカイテン株式会社 エンジニア向け採用資料
fullkaiten
0
10k
予期せぬコストの急増を障害のように扱う――「コスト版ポストモーテム」の導入とその後の改善
muziyoshiz
1
1.4k
SREが向き合う大規模リアーキテクチャ 〜信頼性とアジリティの両立〜
zepprix
0
380
Featured
See All Featured
We Analyzed 250 Million AI Search Results: Here's What I Found
joshbly
1
650
The Anti-SEO Checklist Checklist. Pubcon Cyber Week
ryanjones
0
55
Measuring Dark Social's Impact On Conversion and Attribution
stephenakadiri
1
120
Navigating Weather and Climate Data
rabernat
0
97
Odyssey Design
rkendrick25
PRO
1
490
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1.2k
Max Prin - Stacking Signals: How International SEO Comes Together (And Falls Apart)
techseoconnect
PRO
0
80
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.6k
The Mindset for Success: Future Career Progression
greggifford
PRO
0
230
How to Build an AI Search Optimization Roadmap - Criteria and Steps to Take #SEOIRL
aleyda
1
1.9k
How GitHub (no longer) Works
holman
316
140k
Ethics towards AI in product and experience design
skipperchong
2
190
Transcript
TENSORFLOW FOR ANDROID DEVELOPERS JOE BIRCH - @HITHEREJOE - ANDROID
LEAD @BUFFER - GDE @ANDROID
MACHINE LEARNING 101 Get data Clean, prep & manipulate data
Train Model Test data Improve
MACHINE LEARNING 101 Unsupervised Learning Supervised Learning Clustering Classification Regression
MACHINE LEARNING 101 Unsupervised Learning Supervised Learning Clustering Classification Regression
MACHINE LEARNING 101 Unsupervised Learning Supervised Learning Clustering Classification Regression
MACHINE LEARNING 101 Unsupervised Learning Supervised Learning Clustering Classification Regression
MACHINE LEARNING 101 Unsupervised Learning Supervised Learning Clustering Classification Regression
MACHINE LEARNING 101 Unsupervised Learning Supervised Learning Clustering Classification Regression
MACHINE LEARNING AND MOBILE
MACHINE LEARNING AND MOBILE
TENSORFLOW
TENSORFLOW
COMPUTATION GRAPHS C D F A B E
NEURAL NETWORKS Some Image Result
NEURAL NETWORKS Some Image Result
NEURAL NETWORKS Some Image Result
NEURAL NETWORKS Some Image Result Pre-trained model
BUILDING OUR OWN IMAGE CLASSIFIER USING A MOBILE NET
TENSORBOARD
TENSORBOARD
TENSORBOARD tensorboard --logdir tf_files/training_summaries &
TRAINING DATA
RETRAINING THE MODEL
RETRAINING THE MODEL
RETRAINING THE MODEL
RETRAINING THE MODEL
RETRAINING THE MODEL
RETRAINING THE MODEL
RETRAINING THE MODEL
RETRAINING THE MODEL
RETRAINING THE MODEL
RETRAINING THE MODEL
RETRAINING THE MODEL
HOW TRAINING WORKS?
HOW TRAINING WORKS?
HOW TRAINING WORKS?
HOW TRAINING WORKS?
HOW TRAINING WORKS?
HOW TRAINING WORKS?
MODEL ACCURACY
MODEL ACCURACY
OPTIMISING THE MODEL Model Operation Model Operation Model Operation Model
Operation Load graph Don’t load graph Operation supported?
OPTIMISING THE MODEL
OPTIMISING THE MODEL
OPTIMISING THE MODEL
OPTIMISING THE MODEL
OPTIMISING THE MODEL
QUANTISATION
QUANTISATION
QUANTISATION
QUANTISATION
OPTIMISING THE MODEL
ADDING THIS TO AN APP Add Dependancy Create TF Reference
Feed data Run inference Fetch result Handle confidence
ADDING THIS TO AN APP
ADDING THIS TO AN APP // convert to 3d array
(width / height / color)
ADDING THIS TO AN APP
ADDING THIS TO AN APP
ADDING THIS TO AN APP Shape of our input
ADDING THIS TO AN APP
ADDING THIS TO AN APP
ADDING THIS TO AN APP
ADDING THIS TO AN APP https://github.com/tensorflow/tensorflow
CONCLUSION