Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
model_pipeline_final.pdf
Search
Maxwell
September 18, 2018
Science
1
210
model_pipeline_final.pdf
model pipeline and others in Home Credit Default Risk competition.
Thanks to team mates.
Maxwell
September 18, 2018
Tweet
Share
More Decks by Maxwell
See All by Maxwell
Causal Impact -paper summary-
hoxomaxwell
3
850
Great Barrier Reef Model Pipeline: 15th place
hoxomaxwell
1
220
Lecture materials at the University of Tokyo School of Medicine
hoxomaxwell
1
140
Kaggle Hungry Geese
hoxomaxwell
1
110
HuBMAP 17th place model pipeline
hoxomaxwell
1
98
LT: Shallow Dive into Bayes Factor
hoxomaxwell
6
1.4k
Kaggle APTOS 2019 @ U-Tokyo Med
hoxomaxwell
1
420
Cornell Birdcall 36th place solution
hoxomaxwell
2
240
Kaggle Bengali.AI 6 th place solution
hoxomaxwell
4
8.6k
Other Decks in Science
See All in Science
04_石井クンツ昌子_お茶の水女子大学理事_副学長_D_I社会実現へ向けて.pdf
sip3ristex
0
610
凸最適化からDC最適化まで
santana_hammer
1
290
機械学習 - DBSCAN
trycycle
PRO
0
1k
傾向スコアによる効果検証 / Propensity Score Analysis and Causal Effect Estimation
ikuma_w
0
130
ウェブ・ソーシャルメディア論文読み会 第25回: Differences in misinformation sharing can lead to politically asymmetric sanctions (Nature, 2024)
hkefka385
0
130
データマイニング - ノードの中心性
trycycle
PRO
0
270
コンピュータビジョンによるロボットの視覚と判断:宇宙空間での適応と課題
hf149
1
320
Cross-Media Technologies, Information Science and Human-Information Interaction
signer
PRO
3
31k
テンソル分解による糖尿病の組織特異的遺伝子発現の統合解析を用いた関連疾患の予測
tagtag
2
240
データマイニング - グラフデータと経路
trycycle
PRO
1
210
academist Prize 4期生 研究トーク延長戦!「美は世界を救う」っていうけど、どうやって?
jimpe_hitsuwari
0
160
Celebrate UTIG: Staff and Student Awards 2025
utig
0
160
Featured
See All Featured
Building a Modern Day E-commerce SEO Strategy
aleyda
43
7.6k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
15
1.7k
Producing Creativity
orderedlist
PRO
347
40k
YesSQL, Process and Tooling at Scale
rocio
173
14k
Making the Leap to Tech Lead
cromwellryan
135
9.5k
Embracing the Ebb and Flow
colly
87
4.8k
Music & Morning Musume
bryan
46
6.8k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
44
2.5k
Making Projects Easy
brettharned
117
6.4k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
The Cult of Friendly URLs
andyhume
79
6.6k
Transcript
ikiri_DS Model PipeLine 600+1 ( LB804 ) FEATURES 1000+1 (
LB803 ) meta app meta bur Kernel GP Nejumi features Tereka features + LGBM 5 3 tosh 5 + CatBoost 5 2 1 + LGBM * 4 3 1 + CNN 7 Residual 2 + ExtTree 4 3 1 Residual 1 ( corrected with residual regression ) Blending CV 0.8094 Adversarial Stochastic Blending CV 0.8096 Adversarial Stochastic Blending CV 0.81050 * model drawn in next page + NN 1 3 ONODERA Maxwell Nejumi Tereka RK 1 2 3 4 5 6 7 Branden features 8 Branden + NN 1 3 takuoko features 9 Angus features 10 takuoko nejumi feature Angus + Res2 + LGBM 1 6 + Res1 + LGBM 1 6 1 or 2 or 5 + LGBM 1 or 2 or 5 + CatBoost or + LGBM 5 1 or 2 5 + LGBM 8 + LGBM 9 + LGBM 10 Adversarial Stochastic Blending CV : 0.8061 29.Aug.2018 Tam Tam features 11 + LGBM 11 + RGF 1 + LGBM 11 + RNN 7 1 * using hidden layer as additional features to correct residuals. + CNN 7 + hidden + Res3 + LGBM 1 6 + RGF 1 + Res2 + LGBM 1 6 + LGBM 5 RK features 12 + LGBM 12 1 or 2 12 + LGBM 8 1 or 2 8 + LGBM 3 1 5 or 3 2 5 + LGBM 8 1 12 or 8 2 12 Public 0.8085 17 th Private 0.8017 18 th + LGBM 8 + LGBM 9 + LGBM 10 Ireko DAE 13 Ireko8 + NN 1 13 + NN 1 + NN 1 13 Nejumi prediction Public 0.8093 10 th Private 0.8016 18 th Public 0.8080 23 th Private 0.8028 14 th + RNN 7 1 Public 0.8110 3 rd Private 0.8042 5 th Giba Post Processing Public 2nd 0.81241 Private 2nd 0.80561 Home Credit Default Risk partial partial partial + LGBM 8 1 or 2 8 or 12 + LGBM 3 1 or 2 3 or 12 3 + LGBM 6 1 Residual 3 + hidden + LGBM 1 6' or 6' 1 + LGBM 6' 2 Blending
ikiri_DS Model PipeLine 600+1 ( LB804 ) FEATURES 1000+1 (
LB803 ) meta app meta bur Kernel GP Nejumi features Tereka features tosh + LGBM * 4 3 1 + CNN 7 Residual 2 Residual 1 ( corrected with residual regression ) Blending CV 0.8085 Adversarial Stochastic Blending CV 0.8085 Adversarial Stochastic Blending CV 0.8097 * model drawn in next page ONODERA Maxwell Nejumi Tereka RK 1 2 3 4 5 6 7 Branden features 8 Branden + NN 1 3 takuoko features 9 Angus features 10 takuoko nejumi feature Angus + Res2 + LGBM 1 6 + Res1 + LGBM 1 6 + LGBM 8 + LGBM 9 + LGBM 10 Adversarial Stochastic Blending CV : 0.8061 29.Aug.2018 Tam Tam features 11 + LGBM 11 + LGBM 11 + RNN 7 1 * using hidden layer as additional features to correct residuals. + CNN 7 + hidden + Res3 + LGBM 1 6 + RGF 1 + Res2 + LGBM 1 6 + LGBM 5 RK features 12 + LGBM 12 1 or 2 12 + LGBM 8 1 or 2 8 Public 0.8071 26 th Private 0.8009 37 th + LGBM 8 + LGBM 9 + LGBM 10 Ireko DAE 13 Ireko8 + NN 1 13 + NN 1 + NN 1 13 Nejumi prediction Public 0.8082 23 th Private 0.8022 18 th Public 0.8080 23 th Private 0.8028 14 th Public 0.8099 7 th Private 0.8040 6 th Giba Post Processing Home Credit Default Risk partial + LGBM 8 1 12 or 8 2 12 partial 1 or 2 + LGBM + LGBM 6 1 Residual 3 + hidden + LGBM 1 6' or 6' 1 + LGBM 6' 2 Blending + ExtTree 4 3 1 + NN 1 3 + RGF 1 + LGBM 4 3 2 + XGB 4 3 1 + NN 1 + RNN 7 1 + hidden + Res3 + LGBM 1 6 + Res1 + LGBM 1 6 + hidden + Res4 + LGBM 1 6 stacking with LGBM CV 0.8080 Public 0.8070 / Private 0.8015 Stacking prediction Stacking + LGBM 3 1 or 2 3
application bureau bureau balance AUC : 0.683 (SEED71) 0.683 (SEEDs
avg) AUC 0.772 (SEED71) 0.773 (SEEDs avg) XGBoost app meta feature XGBoost prev meta feature 229 features 300 features all data stacking-like Light GBM 5 stratified fold ( shuffle = True ) 5 / 8 SEEDs rank averaged SEED : 71 for model fit SEED : 710, 711, 712, 713, 714 ( 715, 716, 717 ) for OOF prediction hyper parameter tuned for 603 features (reflected on meta features) XGBoost bureau meta feature ONODERA BASIC FEATURES 600 features NEJUMI FEATURES ( interest rate ) 1 feature 603 ( 604 ) features Local CV 0.80641 Public LB / Private LB 0.80569 / 0.79853 100 th / 105 th AUC 0.710 (SEED71) 0.712 (SEEDs avg) previous inst POS_CASH credit 952 features Local CV 0.80646 LB 0.804 ( ~ 0.805 ) Maxwell 603 ( 604 ) selected features based on ONODERA criteria w/o feature selection Stacking-like Light GBM