Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
model_pipeline_final.pdf
Search
Maxwell
September 18, 2018
Science
1
210
model_pipeline_final.pdf
model pipeline and others in Home Credit Default Risk competition.
Thanks to team mates.
Maxwell
September 18, 2018
Tweet
Share
More Decks by Maxwell
See All by Maxwell
Causal Impact -paper summary-
hoxomaxwell
3
880
Great Barrier Reef Model Pipeline: 15th place
hoxomaxwell
1
220
Lecture materials at the University of Tokyo School of Medicine
hoxomaxwell
1
150
Kaggle Hungry Geese
hoxomaxwell
1
120
HuBMAP 17th place model pipeline
hoxomaxwell
1
110
LT: Shallow Dive into Bayes Factor
hoxomaxwell
6
1.4k
Kaggle APTOS 2019 @ U-Tokyo Med
hoxomaxwell
1
430
Cornell Birdcall 36th place solution
hoxomaxwell
2
240
Kaggle Bengali.AI 6 th place solution
hoxomaxwell
4
8.7k
Other Decks in Science
See All in Science
機械学習 - 授業概要
trycycle
PRO
0
270
蔵本モデルが解き明かす同期と相転移の秘密 〜拍手のリズムはなぜ揃うのか?〜
syotasasaki593876
1
130
安心・効率的な医療現場の実現へ ~オンプレAI & ノーコードワークフローで進める業務改革~
siyoo
0
400
凸最適化からDC最適化まで
santana_hammer
1
320
データベース10: 拡張実体関連モデル
trycycle
PRO
0
1k
実力評価性能を考慮した弓道高校生全国大会の大会制度設計の提案 / (konakalab presentation at MSS 2025.03)
konakalab
2
220
主成分分析に基づく教師なし特徴抽出法を用いたコラーゲン-グリコサミノグリカンメッシュの遺伝子発現への影響
tagtag
0
110
研究って何だっけ / What is Research?
ks91
PRO
1
140
【論文紹介】Is CLIP ideal? No. Can we fix it?Yes! 第65回 コンピュータビジョン勉強会@関東
shun6211
3
580
academist Prize 4期生 研究トーク延長戦!「美は世界を救う」っていうけど、どうやって?
jimpe_hitsuwari
0
430
知能とはなにかーヒトとAIのあいだー
tagtag
0
110
論文紹介 音源分離:SCNET SPARSE COMPRESSION NETWORK FOR MUSIC SOURCE SEPARATION
kenmatsu4
0
380
Featured
See All Featured
A Modern Web Designer's Workflow
chriscoyier
697
190k
Unsuck your backbone
ammeep
671
58k
Build your cross-platform service in a week with App Engine
jlugia
234
18k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
The Cult of Friendly URLs
andyhume
79
6.7k
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
A better future with KSS
kneath
239
18k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.8k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.1k
Visualization
eitanlees
150
16k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
31
2.7k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
970
Transcript
ikiri_DS Model PipeLine 600+1 ( LB804 ) FEATURES 1000+1 (
LB803 ) meta app meta bur Kernel GP Nejumi features Tereka features + LGBM 5 3 tosh 5 + CatBoost 5 2 1 + LGBM * 4 3 1 + CNN 7 Residual 2 + ExtTree 4 3 1 Residual 1 ( corrected with residual regression ) Blending CV 0.8094 Adversarial Stochastic Blending CV 0.8096 Adversarial Stochastic Blending CV 0.81050 * model drawn in next page + NN 1 3 ONODERA Maxwell Nejumi Tereka RK 1 2 3 4 5 6 7 Branden features 8 Branden + NN 1 3 takuoko features 9 Angus features 10 takuoko nejumi feature Angus + Res2 + LGBM 1 6 + Res1 + LGBM 1 6 1 or 2 or 5 + LGBM 1 or 2 or 5 + CatBoost or + LGBM 5 1 or 2 5 + LGBM 8 + LGBM 9 + LGBM 10 Adversarial Stochastic Blending CV : 0.8061 29.Aug.2018 Tam Tam features 11 + LGBM 11 + RGF 1 + LGBM 11 + RNN 7 1 * using hidden layer as additional features to correct residuals. + CNN 7 + hidden + Res3 + LGBM 1 6 + RGF 1 + Res2 + LGBM 1 6 + LGBM 5 RK features 12 + LGBM 12 1 or 2 12 + LGBM 8 1 or 2 8 + LGBM 3 1 5 or 3 2 5 + LGBM 8 1 12 or 8 2 12 Public 0.8085 17 th Private 0.8017 18 th + LGBM 8 + LGBM 9 + LGBM 10 Ireko DAE 13 Ireko8 + NN 1 13 + NN 1 + NN 1 13 Nejumi prediction Public 0.8093 10 th Private 0.8016 18 th Public 0.8080 23 th Private 0.8028 14 th + RNN 7 1 Public 0.8110 3 rd Private 0.8042 5 th Giba Post Processing Public 2nd 0.81241 Private 2nd 0.80561 Home Credit Default Risk partial partial partial + LGBM 8 1 or 2 8 or 12 + LGBM 3 1 or 2 3 or 12 3 + LGBM 6 1 Residual 3 + hidden + LGBM 1 6' or 6' 1 + LGBM 6' 2 Blending
ikiri_DS Model PipeLine 600+1 ( LB804 ) FEATURES 1000+1 (
LB803 ) meta app meta bur Kernel GP Nejumi features Tereka features tosh + LGBM * 4 3 1 + CNN 7 Residual 2 Residual 1 ( corrected with residual regression ) Blending CV 0.8085 Adversarial Stochastic Blending CV 0.8085 Adversarial Stochastic Blending CV 0.8097 * model drawn in next page ONODERA Maxwell Nejumi Tereka RK 1 2 3 4 5 6 7 Branden features 8 Branden + NN 1 3 takuoko features 9 Angus features 10 takuoko nejumi feature Angus + Res2 + LGBM 1 6 + Res1 + LGBM 1 6 + LGBM 8 + LGBM 9 + LGBM 10 Adversarial Stochastic Blending CV : 0.8061 29.Aug.2018 Tam Tam features 11 + LGBM 11 + LGBM 11 + RNN 7 1 * using hidden layer as additional features to correct residuals. + CNN 7 + hidden + Res3 + LGBM 1 6 + RGF 1 + Res2 + LGBM 1 6 + LGBM 5 RK features 12 + LGBM 12 1 or 2 12 + LGBM 8 1 or 2 8 Public 0.8071 26 th Private 0.8009 37 th + LGBM 8 + LGBM 9 + LGBM 10 Ireko DAE 13 Ireko8 + NN 1 13 + NN 1 + NN 1 13 Nejumi prediction Public 0.8082 23 th Private 0.8022 18 th Public 0.8080 23 th Private 0.8028 14 th Public 0.8099 7 th Private 0.8040 6 th Giba Post Processing Home Credit Default Risk partial + LGBM 8 1 12 or 8 2 12 partial 1 or 2 + LGBM + LGBM 6 1 Residual 3 + hidden + LGBM 1 6' or 6' 1 + LGBM 6' 2 Blending + ExtTree 4 3 1 + NN 1 3 + RGF 1 + LGBM 4 3 2 + XGB 4 3 1 + NN 1 + RNN 7 1 + hidden + Res3 + LGBM 1 6 + Res1 + LGBM 1 6 + hidden + Res4 + LGBM 1 6 stacking with LGBM CV 0.8080 Public 0.8070 / Private 0.8015 Stacking prediction Stacking + LGBM 3 1 or 2 3
application bureau bureau balance AUC : 0.683 (SEED71) 0.683 (SEEDs
avg) AUC 0.772 (SEED71) 0.773 (SEEDs avg) XGBoost app meta feature XGBoost prev meta feature 229 features 300 features all data stacking-like Light GBM 5 stratified fold ( shuffle = True ) 5 / 8 SEEDs rank averaged SEED : 71 for model fit SEED : 710, 711, 712, 713, 714 ( 715, 716, 717 ) for OOF prediction hyper parameter tuned for 603 features (reflected on meta features) XGBoost bureau meta feature ONODERA BASIC FEATURES 600 features NEJUMI FEATURES ( interest rate ) 1 feature 603 ( 604 ) features Local CV 0.80641 Public LB / Private LB 0.80569 / 0.79853 100 th / 105 th AUC 0.710 (SEED71) 0.712 (SEEDs avg) previous inst POS_CASH credit 952 features Local CV 0.80646 LB 0.804 ( ~ 0.805 ) Maxwell 603 ( 604 ) selected features based on ONODERA criteria w/o feature selection Stacking-like Light GBM