Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
model_pipeline_final.pdf
Search
Maxwell
September 18, 2018
Science
1
210
model_pipeline_final.pdf
model pipeline and others in Home Credit Default Risk competition.
Thanks to team mates.
Maxwell
September 18, 2018
Tweet
Share
More Decks by Maxwell
See All by Maxwell
Causal Impact -paper summary-
hoxomaxwell
3
900
Great Barrier Reef Model Pipeline: 15th place
hoxomaxwell
1
230
Lecture materials at the University of Tokyo School of Medicine
hoxomaxwell
1
160
Kaggle Hungry Geese
hoxomaxwell
1
130
HuBMAP 17th place model pipeline
hoxomaxwell
1
120
LT: Shallow Dive into Bayes Factor
hoxomaxwell
6
1.4k
Kaggle APTOS 2019 @ U-Tokyo Med
hoxomaxwell
1
430
Cornell Birdcall 36th place solution
hoxomaxwell
2
250
Kaggle Bengali.AI 6 th place solution
hoxomaxwell
4
8.8k
Other Decks in Science
See All in Science
Performance Evaluation and Ranking of Drivers in Multiple Motorsports Using Massey’s Method
konakalab
0
130
動的トリートメント・レジームを推定するDynTxRegimeパッケージ
saltcooky12
0
240
People who frequently use ChatGPT for writing tasks are accurate and robust detectors of AI-generated text
rudorudo11
0
170
HDC tutorial
michielstock
0
260
機械学習 - 決定木からはじめる機械学習
trycycle
PRO
0
1.2k
Kaggle: NeurIPS - Open Polymer Prediction 2025 コンペ 反省会
calpis10000
0
290
LayerXにおける業務の完全自動運転化に向けたAI技術活用事例 / layerx-ai-jsai2025
shimacos
2
21k
高校生就活へのDA導入の提案
shunyanoda
0
6.1k
データベース10: 拡張実体関連モデル
trycycle
PRO
0
1k
Agent開発フレームワークのOverviewとW&B Weaveとのインテグレーション
siyoo
0
400
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
0
130
Lean4による汎化誤差評価の形式化
milano0017
1
390
Featured
See All Featured
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
400
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
職位にかかわらず全員がリーダーシップを発揮するチーム作り / Building a team where everyone can demonstrate leadership regardless of position
madoxten
48
35k
Why Mistakes Are the Best Teachers: Turning Failure into a Pathway for Growth
auna
0
26
Side Projects
sachag
455
43k
Crafting Experiences
bethany
0
21
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.3k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
122
21k
Music & Morning Musume
bryan
46
7k
Navigating Weather and Climate Data
rabernat
0
49
Stop Working from a Prison Cell
hatefulcrawdad
273
21k
Ruling the World: When Life Gets Gamed
codingconduct
0
95
Transcript
ikiri_DS Model PipeLine 600+1 ( LB804 ) FEATURES 1000+1 (
LB803 ) meta app meta bur Kernel GP Nejumi features Tereka features + LGBM 5 3 tosh 5 + CatBoost 5 2 1 + LGBM * 4 3 1 + CNN 7 Residual 2 + ExtTree 4 3 1 Residual 1 ( corrected with residual regression ) Blending CV 0.8094 Adversarial Stochastic Blending CV 0.8096 Adversarial Stochastic Blending CV 0.81050 * model drawn in next page + NN 1 3 ONODERA Maxwell Nejumi Tereka RK 1 2 3 4 5 6 7 Branden features 8 Branden + NN 1 3 takuoko features 9 Angus features 10 takuoko nejumi feature Angus + Res2 + LGBM 1 6 + Res1 + LGBM 1 6 1 or 2 or 5 + LGBM 1 or 2 or 5 + CatBoost or + LGBM 5 1 or 2 5 + LGBM 8 + LGBM 9 + LGBM 10 Adversarial Stochastic Blending CV : 0.8061 29.Aug.2018 Tam Tam features 11 + LGBM 11 + RGF 1 + LGBM 11 + RNN 7 1 * using hidden layer as additional features to correct residuals. + CNN 7 + hidden + Res3 + LGBM 1 6 + RGF 1 + Res2 + LGBM 1 6 + LGBM 5 RK features 12 + LGBM 12 1 or 2 12 + LGBM 8 1 or 2 8 + LGBM 3 1 5 or 3 2 5 + LGBM 8 1 12 or 8 2 12 Public 0.8085 17 th Private 0.8017 18 th + LGBM 8 + LGBM 9 + LGBM 10 Ireko DAE 13 Ireko8 + NN 1 13 + NN 1 + NN 1 13 Nejumi prediction Public 0.8093 10 th Private 0.8016 18 th Public 0.8080 23 th Private 0.8028 14 th + RNN 7 1 Public 0.8110 3 rd Private 0.8042 5 th Giba Post Processing Public 2nd 0.81241 Private 2nd 0.80561 Home Credit Default Risk partial partial partial + LGBM 8 1 or 2 8 or 12 + LGBM 3 1 or 2 3 or 12 3 + LGBM 6 1 Residual 3 + hidden + LGBM 1 6' or 6' 1 + LGBM 6' 2 Blending
ikiri_DS Model PipeLine 600+1 ( LB804 ) FEATURES 1000+1 (
LB803 ) meta app meta bur Kernel GP Nejumi features Tereka features tosh + LGBM * 4 3 1 + CNN 7 Residual 2 Residual 1 ( corrected with residual regression ) Blending CV 0.8085 Adversarial Stochastic Blending CV 0.8085 Adversarial Stochastic Blending CV 0.8097 * model drawn in next page ONODERA Maxwell Nejumi Tereka RK 1 2 3 4 5 6 7 Branden features 8 Branden + NN 1 3 takuoko features 9 Angus features 10 takuoko nejumi feature Angus + Res2 + LGBM 1 6 + Res1 + LGBM 1 6 + LGBM 8 + LGBM 9 + LGBM 10 Adversarial Stochastic Blending CV : 0.8061 29.Aug.2018 Tam Tam features 11 + LGBM 11 + LGBM 11 + RNN 7 1 * using hidden layer as additional features to correct residuals. + CNN 7 + hidden + Res3 + LGBM 1 6 + RGF 1 + Res2 + LGBM 1 6 + LGBM 5 RK features 12 + LGBM 12 1 or 2 12 + LGBM 8 1 or 2 8 Public 0.8071 26 th Private 0.8009 37 th + LGBM 8 + LGBM 9 + LGBM 10 Ireko DAE 13 Ireko8 + NN 1 13 + NN 1 + NN 1 13 Nejumi prediction Public 0.8082 23 th Private 0.8022 18 th Public 0.8080 23 th Private 0.8028 14 th Public 0.8099 7 th Private 0.8040 6 th Giba Post Processing Home Credit Default Risk partial + LGBM 8 1 12 or 8 2 12 partial 1 or 2 + LGBM + LGBM 6 1 Residual 3 + hidden + LGBM 1 6' or 6' 1 + LGBM 6' 2 Blending + ExtTree 4 3 1 + NN 1 3 + RGF 1 + LGBM 4 3 2 + XGB 4 3 1 + NN 1 + RNN 7 1 + hidden + Res3 + LGBM 1 6 + Res1 + LGBM 1 6 + hidden + Res4 + LGBM 1 6 stacking with LGBM CV 0.8080 Public 0.8070 / Private 0.8015 Stacking prediction Stacking + LGBM 3 1 or 2 3
application bureau bureau balance AUC : 0.683 (SEED71) 0.683 (SEEDs
avg) AUC 0.772 (SEED71) 0.773 (SEEDs avg) XGBoost app meta feature XGBoost prev meta feature 229 features 300 features all data stacking-like Light GBM 5 stratified fold ( shuffle = True ) 5 / 8 SEEDs rank averaged SEED : 71 for model fit SEED : 710, 711, 712, 713, 714 ( 715, 716, 717 ) for OOF prediction hyper parameter tuned for 603 features (reflected on meta features) XGBoost bureau meta feature ONODERA BASIC FEATURES 600 features NEJUMI FEATURES ( interest rate ) 1 feature 603 ( 604 ) features Local CV 0.80641 Public LB / Private LB 0.80569 / 0.79853 100 th / 105 th AUC 0.710 (SEED71) 0.712 (SEEDs avg) previous inst POS_CASH credit 952 features Local CV 0.80646 LB 0.804 ( ~ 0.805 ) Maxwell 603 ( 604 ) selected features based on ONODERA criteria w/o feature selection Stacking-like Light GBM