Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
PHH_Graph_Representation_Learning_11092020
Search
phanhoang17
September 11, 2020
Research
0
31
PHH_Graph_Representation_Learning_11092020
phanhoang17
September 11, 2020
Tweet
Share
More Decks by phanhoang17
See All by phanhoang17
Building a simple RS for Viblo website
huyhoang17
0
50
Introduction to TensorFlow
huyhoang17
0
120
Deep Learning - Conceptual Understanding and Applications
huyhoang17
0
62
Pandas for Data Analysis
huyhoang17
0
180
Other Decks in Research
See All in Research
最適決定木を用いた処方的価格最適化
mickey_kubo
4
1.7k
EarthSynth: Generating Informative Earth Observation with Diffusion Models
satai
3
100
実行環境に中立なWebAssemblyライブマイグレーション機構/techtalk-2025spring
chikuwait
0
230
データxデジタルマップで拓く ミラノ発・地域共創最前線
mapconcierge4agu
0
180
Collaborative Development of Foundation Models at Japanese Academia
odashi
2
560
Ad-DS Paper Circle #1
ykaneko1992
0
5.5k
EOGS: Gaussian Splatting for Efficient Satellite Image Photogrammetry
satai
4
270
引力・斥力を制御可能なランダム部分集合の確率分布
wasyro
0
170
LLM-as-a-Judge: 文章をLLMで評価する@教育機関DXシンポ
k141303
3
820
Adaptive Experimental Design for Efficient Average Treatment Effect Estimation and Treatment Choice
masakat0
0
130
20250502_ABEJA_論文読み会_スライド
flatton
0
170
NLP2025参加報告会 LT資料
hargon24
1
320
Featured
See All Featured
Practical Orchestrator
shlominoach
188
11k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3.1k
A Tale of Four Properties
chriscoyier
160
23k
Building a Modern Day E-commerce SEO Strategy
aleyda
42
7.4k
StorybookのUI Testing Handbookを読んだ
zakiyama
30
5.9k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
181
53k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
5
240
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
161
15k
Building Applications with DynamoDB
mza
95
6.5k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
130
19k
Visualization
eitanlees
146
16k
Optimizing for Happiness
mojombo
379
70k
Transcript
Graph Representation Learning An introduction Phan Hoang - AI Research
Team
Do we need deep graph neural network?
Graph Representation Learning?!
Graph Representation Learning?! - Viblo recommender engine - Graph-based recommender
system for paper citation network - https://api.semanticscholar.org/v1/paper/arXiv:2006.07739 - https://jsoneditoronline.org/#left=cloud.f3946e860ca54e98934899f6f30eb475 - https://www.connectedpapers.com/
Graph Representation Learning?!
Graph Representation Learning?!
Prerequisite knowledge - https://viblo.asia/p/6J3ZgP0qlmB#_1-so-ly-thuyet-do-thi-co-ban-1
Tasks - https://viblo.asia/p/6J3ZgP0qlmB#_1-so-bai-toan-dien-hinh-2 - Node Classification - Link Prediction -
Graph Clustering & community detection - ...
Node Embedding - Random Walk / DeepWalk - Word2Vec
Node Embedding - Random Walk
Node Embedding - Skip-gram model
DeepWalk - karate dataset
Node Embedding - Cons - Unseen node? - Node feature?
- Tranductive learning vs inductive learning
Graph Neural Network - an introduction
Example of GCN model
Example of GCN model
Graph Convolution Network - Kipf (2016)
GraphSage - L.Hamilton (2017)
GraphSage - L.Hamilton (2017)
GraphSage - inductive learning
The number of layers
GraphSage - L.Hamilton (2017) - Loss function, un-supervised learning
How to apply?
Real use-case applications - PinSage / UberEat
Real use-case applications - PinSage / UberEat - Based on
GraphSage paper (Haminton / 2017) - Heterogeneous graph / bipartite graph - Node Embedding: image + text feature, user info - Edge: Pin-Board, User-Dish, User-Restaurant relation
Real use-case applications - Decagon
Real use-case applications - Decagon
Real use-case applications - Goal-directed generation
How to model the GNN for a specific dataset?
Task: Text Classification
Task: Relation Extraction / NLP
Task: Key-Information Extraction
Task: Recommender System
Other tasks - 3D Object Detection - Action Recognition /
Pose Estimation - GAN / VAE - GAT / Graph Transformer - Feature Matching - Key Information Extraction - Scene Graph Generation - Recommender System - ...
Papers - Cluster-GCN / GraphSAINT - graph/sub-graph/node sampling - GAT
(graph attention network) - GIN (graph isomorphism network) - Deep-GCN / Deeper-GCN - going deeper with GCN - ...
Cons - non-injective aggregate function
Cons - adversarial attack
Thank you! https://viblo.asia/p/deep-learning-graph-neural-network-a-literature-review-and-applications-6J3ZgP0qlmB