Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
PHH_Graph_Representation_Learning_11092020
Search
phanhoang17
September 11, 2020
Research
0
34
PHH_Graph_Representation_Learning_11092020
phanhoang17
September 11, 2020
Tweet
Share
More Decks by phanhoang17
See All by phanhoang17
Building a simple RS for Viblo website
huyhoang17
0
51
Introduction to TensorFlow
huyhoang17
0
130
Deep Learning - Conceptual Understanding and Applications
huyhoang17
0
64
Pandas for Data Analysis
huyhoang17
0
180
Other Decks in Research
See All in Research
超高速データサイエンス
matsui_528
1
200
カスタマーサクセスの視点からAWS Summitの展示を考える~製品開発で活用できる勘所~
masakiokuda
2
220
Mamba-in-Mamba: Centralized Mamba-Cross-Scan in Tokenized Mamba Model for Hyperspectral Image Classification
satai
3
170
スキマバイトサービスにおける現場起点でのデザインアプローチ
yoshioshingyouji
0
260
cvpaper.challenge 10年の軌跡 / cvpaper.challenge a decade-long journey
gatheluck
3
360
VectorLLM: Human-like Extraction of Structured Building Contours via Multimodal LLMs
satai
4
390
LLM-jp-3 and beyond: Training Large Language Models
odashi
1
580
ip71_contraflow_reconfiguration
stkmsd
0
120
ウェブ・ソーシャルメディア論文読み会 第31回: The rising entropy of English in the attention economy. (Commun Psychology, 2024)
hkefka385
1
110
AIグラフィックデザインの進化:断片から統合(One Piece)へ / From Fragment to One Piece: A Survey on AI-Driven Graphic Design
shunk031
0
540
論文紹介:Safety Alignment Should be Made More Than Just a Few Tokens Deep
kazutoshishinoda
0
120
When Learned Data Structures Meet Computer Vision
matsui_528
1
360
Featured
See All Featured
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
BBQ
matthewcrist
89
9.9k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
RailsConf 2023
tenderlove
30
1.3k
Six Lessons from altMBA
skipperchong
29
4.1k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.2k
The Cost Of JavaScript in 2023
addyosmani
55
9.2k
What's in a price? How to price your products and services
michaelherold
246
12k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
Testing 201, or: Great Expectations
jmmastey
46
7.8k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.2k
The World Runs on Bad Software
bkeepers
PRO
72
12k
Transcript
Graph Representation Learning An introduction Phan Hoang - AI Research
Team
Do we need deep graph neural network?
Graph Representation Learning?!
Graph Representation Learning?! - Viblo recommender engine - Graph-based recommender
system for paper citation network - https://api.semanticscholar.org/v1/paper/arXiv:2006.07739 - https://jsoneditoronline.org/#left=cloud.f3946e860ca54e98934899f6f30eb475 - https://www.connectedpapers.com/
Graph Representation Learning?!
Graph Representation Learning?!
Prerequisite knowledge - https://viblo.asia/p/6J3ZgP0qlmB#_1-so-ly-thuyet-do-thi-co-ban-1
Tasks - https://viblo.asia/p/6J3ZgP0qlmB#_1-so-bai-toan-dien-hinh-2 - Node Classification - Link Prediction -
Graph Clustering & community detection - ...
Node Embedding - Random Walk / DeepWalk - Word2Vec
Node Embedding - Random Walk
Node Embedding - Skip-gram model
DeepWalk - karate dataset
Node Embedding - Cons - Unseen node? - Node feature?
- Tranductive learning vs inductive learning
Graph Neural Network - an introduction
Example of GCN model
Example of GCN model
Graph Convolution Network - Kipf (2016)
GraphSage - L.Hamilton (2017)
GraphSage - L.Hamilton (2017)
GraphSage - inductive learning
The number of layers
GraphSage - L.Hamilton (2017) - Loss function, un-supervised learning
How to apply?
Real use-case applications - PinSage / UberEat
Real use-case applications - PinSage / UberEat - Based on
GraphSage paper (Haminton / 2017) - Heterogeneous graph / bipartite graph - Node Embedding: image + text feature, user info - Edge: Pin-Board, User-Dish, User-Restaurant relation
Real use-case applications - Decagon
Real use-case applications - Decagon
Real use-case applications - Goal-directed generation
How to model the GNN for a specific dataset?
Task: Text Classification
Task: Relation Extraction / NLP
Task: Key-Information Extraction
Task: Recommender System
Other tasks - 3D Object Detection - Action Recognition /
Pose Estimation - GAN / VAE - GAT / Graph Transformer - Feature Matching - Key Information Extraction - Scene Graph Generation - Recommender System - ...
Papers - Cluster-GCN / GraphSAINT - graph/sub-graph/node sampling - GAT
(graph attention network) - GIN (graph isomorphism network) - Deep-GCN / Deeper-GCN - going deeper with GCN - ...
Cons - non-injective aggregate function
Cons - adversarial attack
Thank you! https://viblo.asia/p/deep-learning-graph-neural-network-a-literature-review-and-applications-6J3ZgP0qlmB