Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
PHH_Graph_Representation_Learning_11092020
Search
phanhoang17
September 11, 2020
Research
0
34
PHH_Graph_Representation_Learning_11092020
phanhoang17
September 11, 2020
Tweet
Share
More Decks by phanhoang17
See All by phanhoang17
Building a simple RS for Viblo website
huyhoang17
0
51
Introduction to TensorFlow
huyhoang17
0
130
Deep Learning - Conceptual Understanding and Applications
huyhoang17
0
64
Pandas for Data Analysis
huyhoang17
0
180
Other Decks in Research
See All in Research
スキマバイトサービスにおける現場起点でのデザインアプローチ
yoshioshingyouji
0
250
cvpaper.challenge 10年の軌跡 / cvpaper.challenge a decade-long journey
gatheluck
3
350
説明可能な機械学習と数理最適化
kelicht
0
220
投資戦略202508
pw
0
570
Learning to (Learn at Test Time): RNNs with Expressive Hidden States
kurita
1
280
Google Agent Development Kit (ADK) 入門 🚀
mickey_kubo
2
2.2k
引力・斥力を制御可能なランダム部分集合の確率分布
wasyro
0
260
Mechanistic Interpretability:解釈可能性研究の新たな潮流
koshiro_aoki
1
480
不確実性下における目的と手段の統合的探索に向けた連続腕バンディットの応用 / iot70_gp_rff_mab
monochromegane
2
190
ip71_contraflow_reconfiguration
stkmsd
0
110
IMC の細かすぎる話 2025
smly
2
700
Time to Cash: The Full Stack Breakdown of Modern ATM Attacks
ratatata
0
160
Featured
See All Featured
Done Done
chrislema
185
16k
Automating Front-end Workflow
addyosmani
1371
200k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
Typedesign – Prime Four
hannesfritz
42
2.8k
Building a Modern Day E-commerce SEO Strategy
aleyda
44
7.8k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
10
880
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.6k
RailsConf 2023
tenderlove
30
1.3k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.2k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
A better future with KSS
kneath
239
18k
Reflections from 52 weeks, 52 projects
jeffersonlam
353
21k
Transcript
Graph Representation Learning An introduction Phan Hoang - AI Research
Team
Do we need deep graph neural network?
Graph Representation Learning?!
Graph Representation Learning?! - Viblo recommender engine - Graph-based recommender
system for paper citation network - https://api.semanticscholar.org/v1/paper/arXiv:2006.07739 - https://jsoneditoronline.org/#left=cloud.f3946e860ca54e98934899f6f30eb475 - https://www.connectedpapers.com/
Graph Representation Learning?!
Graph Representation Learning?!
Prerequisite knowledge - https://viblo.asia/p/6J3ZgP0qlmB#_1-so-ly-thuyet-do-thi-co-ban-1
Tasks - https://viblo.asia/p/6J3ZgP0qlmB#_1-so-bai-toan-dien-hinh-2 - Node Classification - Link Prediction -
Graph Clustering & community detection - ...
Node Embedding - Random Walk / DeepWalk - Word2Vec
Node Embedding - Random Walk
Node Embedding - Skip-gram model
DeepWalk - karate dataset
Node Embedding - Cons - Unseen node? - Node feature?
- Tranductive learning vs inductive learning
Graph Neural Network - an introduction
Example of GCN model
Example of GCN model
Graph Convolution Network - Kipf (2016)
GraphSage - L.Hamilton (2017)
GraphSage - L.Hamilton (2017)
GraphSage - inductive learning
The number of layers
GraphSage - L.Hamilton (2017) - Loss function, un-supervised learning
How to apply?
Real use-case applications - PinSage / UberEat
Real use-case applications - PinSage / UberEat - Based on
GraphSage paper (Haminton / 2017) - Heterogeneous graph / bipartite graph - Node Embedding: image + text feature, user info - Edge: Pin-Board, User-Dish, User-Restaurant relation
Real use-case applications - Decagon
Real use-case applications - Decagon
Real use-case applications - Goal-directed generation
How to model the GNN for a specific dataset?
Task: Text Classification
Task: Relation Extraction / NLP
Task: Key-Information Extraction
Task: Recommender System
Other tasks - 3D Object Detection - Action Recognition /
Pose Estimation - GAN / VAE - GAT / Graph Transformer - Feature Matching - Key Information Extraction - Scene Graph Generation - Recommender System - ...
Papers - Cluster-GCN / GraphSAINT - graph/sub-graph/node sampling - GAT
(graph attention network) - GIN (graph isomorphism network) - Deep-GCN / Deeper-GCN - going deeper with GCN - ...
Cons - non-injective aggregate function
Cons - adversarial attack
Thank you! https://viblo.asia/p/deep-learning-graph-neural-network-a-literature-review-and-applications-6J3ZgP0qlmB