Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
PHH_Graph_Representation_Learning_11092020
Search
phanhoang17
September 11, 2020
Research
0
31
PHH_Graph_Representation_Learning_11092020
phanhoang17
September 11, 2020
Tweet
Share
More Decks by phanhoang17
See All by phanhoang17
Building a simple RS for Viblo website
huyhoang17
0
50
Introduction to TensorFlow
huyhoang17
0
120
Deep Learning - Conceptual Understanding and Applications
huyhoang17
0
62
Pandas for Data Analysis
huyhoang17
0
180
Other Decks in Research
See All in Research
Adaptive fusion of multi-modal remote sensing data for optimal sub-field crop yield prediction
satai
3
230
RHO-1: Not All Tokens Are What You Need
sansan_randd
1
160
経済学と機械学習:因果推論と密度比推定を中心に
masakat0
0
110
数理最適化に基づく制御
mickey_kubo
6
700
Vision and LanguageからのEmbodied AIとAI for Science
yushiku
PRO
1
420
引力・斥力を制御可能なランダム部分集合の確率分布
wasyro
0
210
NLP Colloquium
junokim
1
180
Adaptive Experimental Design for Efficient Average Treatment Effect Estimation and Treatment Choice
masakat0
0
150
最適化と機械学習による問題解決
mickey_kubo
0
150
2021年度-基盤研究B-研究計画調書
trycycle
PRO
0
170
When Submarine Cables Go Dark: Examining the Web Services Resilience Amid Global Internet Disruptions
irvin
0
260
Ad-DS Paper Circle #1
ykaneko1992
0
5.8k
Featured
See All Featured
Documentation Writing (for coders)
carmenintech
73
5k
Site-Speed That Sticks
csswizardry
10
740
Designing for humans not robots
tammielis
253
25k
Bash Introduction
62gerente
613
210k
Done Done
chrislema
185
16k
YesSQL, Process and Tooling at Scale
rocio
173
14k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Faster Mobile Websites
deanohume
308
31k
StorybookのUI Testing Handbookを読んだ
zakiyama
30
6k
Building a Modern Day E-commerce SEO Strategy
aleyda
42
7.4k
Music & Morning Musume
bryan
46
6.7k
The Power of CSS Pseudo Elements
geoffreycrofte
77
5.9k
Transcript
Graph Representation Learning An introduction Phan Hoang - AI Research
Team
Do we need deep graph neural network?
Graph Representation Learning?!
Graph Representation Learning?! - Viblo recommender engine - Graph-based recommender
system for paper citation network - https://api.semanticscholar.org/v1/paper/arXiv:2006.07739 - https://jsoneditoronline.org/#left=cloud.f3946e860ca54e98934899f6f30eb475 - https://www.connectedpapers.com/
Graph Representation Learning?!
Graph Representation Learning?!
Prerequisite knowledge - https://viblo.asia/p/6J3ZgP0qlmB#_1-so-ly-thuyet-do-thi-co-ban-1
Tasks - https://viblo.asia/p/6J3ZgP0qlmB#_1-so-bai-toan-dien-hinh-2 - Node Classification - Link Prediction -
Graph Clustering & community detection - ...
Node Embedding - Random Walk / DeepWalk - Word2Vec
Node Embedding - Random Walk
Node Embedding - Skip-gram model
DeepWalk - karate dataset
Node Embedding - Cons - Unseen node? - Node feature?
- Tranductive learning vs inductive learning
Graph Neural Network - an introduction
Example of GCN model
Example of GCN model
Graph Convolution Network - Kipf (2016)
GraphSage - L.Hamilton (2017)
GraphSage - L.Hamilton (2017)
GraphSage - inductive learning
The number of layers
GraphSage - L.Hamilton (2017) - Loss function, un-supervised learning
How to apply?
Real use-case applications - PinSage / UberEat
Real use-case applications - PinSage / UberEat - Based on
GraphSage paper (Haminton / 2017) - Heterogeneous graph / bipartite graph - Node Embedding: image + text feature, user info - Edge: Pin-Board, User-Dish, User-Restaurant relation
Real use-case applications - Decagon
Real use-case applications - Decagon
Real use-case applications - Goal-directed generation
How to model the GNN for a specific dataset?
Task: Text Classification
Task: Relation Extraction / NLP
Task: Key-Information Extraction
Task: Recommender System
Other tasks - 3D Object Detection - Action Recognition /
Pose Estimation - GAN / VAE - GAT / Graph Transformer - Feature Matching - Key Information Extraction - Scene Graph Generation - Recommender System - ...
Papers - Cluster-GCN / GraphSAINT - graph/sub-graph/node sampling - GAT
(graph attention network) - GIN (graph isomorphism network) - Deep-GCN / Deeper-GCN - going deeper with GCN - ...
Cons - non-injective aggregate function
Cons - adversarial attack
Thank you! https://viblo.asia/p/deep-learning-graph-neural-network-a-literature-review-and-applications-6J3ZgP0qlmB