Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
PHH_Graph_Representation_Learning_11092020
Search
phanhoang17
September 11, 2020
Research
0
35
PHH_Graph_Representation_Learning_11092020
phanhoang17
September 11, 2020
Tweet
Share
More Decks by phanhoang17
See All by phanhoang17
Building a simple RS for Viblo website
huyhoang17
0
52
Introduction to TensorFlow
huyhoang17
0
130
Deep Learning - Conceptual Understanding and Applications
huyhoang17
0
64
Pandas for Data Analysis
huyhoang17
0
180
Other Decks in Research
See All in Research
説明可能な機械学習と数理最適化
kelicht
2
940
ドメイン知識がない領域での自然言語処理の始め方
hargon24
1
240
第二言語習得研究における 明示的・暗示的知識の再検討:この分類は何に役に立つか,何に役に立たないか
tam07pb915
0
1.2k
令和最新技術で伝統掲示板を再構築: HonoX で作る型安全なスレッドフロート型掲示板 / かろっく@calloc134 - Hono Conference 2025
calloc134
0
550
空間音響処理における物理法則に基づく機械学習
skoyamalab
0
190
Sat2City:3D City Generation from A Single Satellite Image with Cascaded Latent Diffusion
satai
4
660
超高速データサイエンス
matsui_528
2
380
【SIGGRAPH Asia 2025】Lo-Fi Photograph with Lo-Fi Communication
toremolo72
0
120
一般道の交通量減少と速度低下についての全国分析と熊本市におけるケーススタディ(20251122 土木計画学研究発表会)
trafficbrain
0
160
競合や要望に流されない─B2B SaaSでミニマム要件を決めるリアルな取り組み / Don't be swayed by competitors or requests - A real effort to determine minimum requirements for B2B SaaS
kaminashi
0
740
その推薦システムの評価指標、ユーザーの感覚とズレてるかも
kuri8ive
1
310
LLM-Assisted Semantic Guidance for Sparsely Annotated Remote Sensing Object Detection
satai
3
470
Featured
See All Featured
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
Believing is Seeing
oripsolob
1
56
Hiding What from Whom? A Critical Review of the History of Programming languages for Music
tomoyanonymous
2
420
Google's AI Overviews - The New Search
badams
0
910
Lessons Learnt from Crawling 1000+ Websites
charlesmeaden
PRO
1
1.1k
Dominate Local Search Results - an insider guide to GBP, reviews, and Local SEO
greggifford
PRO
0
78
How To Speak Unicorn (iThemes Webinar)
marktimemedia
1
380
Learning to Love Humans: Emotional Interface Design
aarron
275
41k
The Anti-SEO Checklist Checklist. Pubcon Cyber Week
ryanjones
0
68
Marketing to machines
jonoalderson
1
4.6k
Reflections from 52 weeks, 52 projects
jeffersonlam
356
21k
The Art of Programming - Codeland 2020
erikaheidi
57
14k
Transcript
Graph Representation Learning An introduction Phan Hoang - AI Research
Team
Do we need deep graph neural network?
Graph Representation Learning?!
Graph Representation Learning?! - Viblo recommender engine - Graph-based recommender
system for paper citation network - https://api.semanticscholar.org/v1/paper/arXiv:2006.07739 - https://jsoneditoronline.org/#left=cloud.f3946e860ca54e98934899f6f30eb475 - https://www.connectedpapers.com/
Graph Representation Learning?!
Graph Representation Learning?!
Prerequisite knowledge - https://viblo.asia/p/6J3ZgP0qlmB#_1-so-ly-thuyet-do-thi-co-ban-1
Tasks - https://viblo.asia/p/6J3ZgP0qlmB#_1-so-bai-toan-dien-hinh-2 - Node Classification - Link Prediction -
Graph Clustering & community detection - ...
Node Embedding - Random Walk / DeepWalk - Word2Vec
Node Embedding - Random Walk
Node Embedding - Skip-gram model
DeepWalk - karate dataset
Node Embedding - Cons - Unseen node? - Node feature?
- Tranductive learning vs inductive learning
Graph Neural Network - an introduction
Example of GCN model
Example of GCN model
Graph Convolution Network - Kipf (2016)
GraphSage - L.Hamilton (2017)
GraphSage - L.Hamilton (2017)
GraphSage - inductive learning
The number of layers
GraphSage - L.Hamilton (2017) - Loss function, un-supervised learning
How to apply?
Real use-case applications - PinSage / UberEat
Real use-case applications - PinSage / UberEat - Based on
GraphSage paper (Haminton / 2017) - Heterogeneous graph / bipartite graph - Node Embedding: image + text feature, user info - Edge: Pin-Board, User-Dish, User-Restaurant relation
Real use-case applications - Decagon
Real use-case applications - Decagon
Real use-case applications - Goal-directed generation
How to model the GNN for a specific dataset?
Task: Text Classification
Task: Relation Extraction / NLP
Task: Key-Information Extraction
Task: Recommender System
Other tasks - 3D Object Detection - Action Recognition /
Pose Estimation - GAN / VAE - GAT / Graph Transformer - Feature Matching - Key Information Extraction - Scene Graph Generation - Recommender System - ...
Papers - Cluster-GCN / GraphSAINT - graph/sub-graph/node sampling - GAT
(graph attention network) - GIN (graph isomorphism network) - Deep-GCN / Deeper-GCN - going deeper with GCN - ...
Cons - non-injective aggregate function
Cons - adversarial attack
Thank you! https://viblo.asia/p/deep-learning-graph-neural-network-a-literature-review-and-applications-6J3ZgP0qlmB