Upgrade to Pro — share decks privately, control downloads, hide ads and more …

PyConJP2021に行ってきたログ.pdf

Sponsored · Your Podcast. Everywhere. Effortlessly. Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
Avatar for Intel0tw5727 Intel0tw5727
August 02, 2022
16

 PyConJP2021に行ってきたログ.pdf

Avatar for Intel0tw5727

Intel0tw5727

August 02, 2022
Tweet

Transcript

  1.  !*OUFMUX • 1Z$PO+1͸τʔΫηογϣϯΛฉ͚͕ͩ͘શͯͰ͸ͳ͍ʂ • τʔΫηογϣϯҎ֎ʹ΋༷ʑͳίϯςϯπʹඈͼࠐΜͰΈΔ༐ؾ͕͋Ε͹ ָ͠Έ͸ഒ૿ʂ • 1Z$PO+1Λෆࣗ༝ͳָ͘͠Ή͜ͱ͕Ͱ͖Δͷ͸ɺӡӦελοϑਓਓͷؤ ுΓͷ͓͔͛ͩͬͨΓ͢ΔͷͰɺ࠷େݶͷײँΛ👏

    • ࢀՃऀͱͯ͠෺଍Γͳ͘ͳͬͨΒɺ࣍͸εϙϯαʔ΍ελοϑ΍ଞͷܗͰࢀ Ճͯ͠Έ·͠ΐ͏ʂ 5-%3 ͜ͷൃදͰ఻͍͑ͨ͜ͱ 1Z$PO+1ͷָ͠Έํ͸ઍࠩສผɻࣗ෼ͳΓͷָ͠ΈํΛ୳͠ʹདྷ ೥΋ͥͻࢀՃͯ͠ΈΑ͏ʂ
  2.  !*OUFMUX • ؆୯ͳΠϕϯτ঺հ • τʔΫηογϣϯ΁ͷײ૝ • τʔΫηογϣϯҎ֎ͷίϯςϯπʹ͍ͭͯ • ӡӦܦݧऀ໨ઢͰݟͨ1Z$PO+1

    • ϓϥνφεϙϯαʔʹͳΔ࣮ͬͯࡍͲ͏ͳͷʁ ຊ೔࿩͢͜ͱ ओʹ1Z$PO+1ͷ͍ΖΜͳίϯςϯπΛࢀՃऀ໨ઢͰ঺հ͍ͯ͘͠ ͜ͱ͕ϝΠϯςʔϚͰ͢ʂ
  3.  !*OUFMUX • ͪΎΒσʔλגࣜձࣾ ݩؾসإσʔλΞφϦετ • )/͍ΜͯΔ Ͱ׆ಈ͍ͯ͠·͢ ʢ4/4!JOUFMUX •

    1Z$PO ,ZVTIVJO0LJOBXB࠲௕ 1Z$PO ,ZVTIV໾һɺ1Z%BUB0LJOBXB ΦʔΨφΠβʔ • ޷͖ͳϥΠϒϥϦ͸ʮURENʯ ࣗݾ঺հ ଟ࿨ా ਅޛ r 5BXBEB 4IJOHP
  4.  !*OUFMUX • 1Z$PO+1 ೔ຊશࠃ͔Β1ZUIPOJTUB͕ू·Δ1Z$PO • 1Z$PO NJOJ ֤஍ҬͰ։࠵͞ΕΔ1Z$PO •

    )JSPTIJNB • 4IJ[VPLB • 0TBLB • 1Z$PO ,ZVTIV ۝भ஍۠Ͱ։࠵͞ΕΔ1Z$PO • %KBOHP$POHSFTT ʮ%KBOHPʯϑϨʔϜϫʔΫʹؔΘΔશͯͷਓͷΧϯϑΝϨϯε Πϕϯτ঺հ 1Z$PO+1ͱ͸೔ຊͰ։࠵͞ΕΔ1ZUIPOϢʔβʔͷͨΊͷΧϯ ϑΝϨϯεͰ৘ใަ׵΍ަྲྀΛ͢ΔΠϕϯτͰ͢ʂ
  5.  !*OUFMUX • ୩߹ ኍل͞Μ ʢকعͱ1ZUIPOͷૉఢͳग़ձ͍ʣ • ϓϩع࢜ º ΤϯδχΞ

    ͱ͍͏ҟ৭ͷ૊Έ߹Θͤͳ͜ͷํ͸ɺϓϩع࢜ͱ͸͔͚Β΋ײ ͤ͡͞ͳ͍ΤϯδχΞ৭ͷೱ͍ํͰɺʮ1ZUIPOº কعͰԿ͕ղܾͰ͖ΔͩΖ͏ʁʯͱ ৗʹνϟϨϯδ͢Δૉ੖Β͍͠ํͰͨ͠ɻ τʔΫηογϣϯ΁ͷײ૝ ೔໨͸ϓϩع࢜ͷ୩߹ኍل͞Μͷ,FZOPUF͔Β࢝·Γɺσʔλ ෼ੳؔ࿈ͷηογϣϯΛத৺ʹฉ͍ͨ೔
  6.  !*OUFMUX • 'VKJOF 4IJHFOPCV͞Μ ʢTDJLJUMFBSOͷ৽ػೳΛ঺հ͠·͢ʣ • σʔλ෼ੳʹ͓͍ͯଉΛٵ͏Α͏ʹ࢖͍ͬͯΔ4DJLJUMFBSOϥΠϒϥϦʹ͍ͭͯɺ௚ۙ௥ Ճ͞ΕͨػೳΛ۩ମྫͱͱ΋ʹ؆ܿʹ঺հ͍͚ͨͩͨൃදͰɺͳʹ͔࣋ͪؼΔ͜ͱ͕Ͱ ͖ͨࢀՃऀ΋গͳ͘ͳ͍͸ͣɻ

    τʔΫηογϣϯ΁ͷײ૝ ೔໨͸ϓϩع࢜ͷ୩߹ኍل͞Μͷ,FZOPUF͔Β࢝·Γɺσʔλ ෼ੳؔ࿈ͷηογϣϯΛத৺ʹฉ͍ͨ೔ )BMWJOH(SJE4FBSDI$7 param_grid = { "max_depth": [3, None], "min_samples_split": [5, 10] } search = HalvingGridSearchCV( clf, param_grid, resource='n_estimators', max_resources=10, random_state=0 ).fit(X, y) $PMVNO5SBOTGPSNFS featuring = ColumnTransformer([ ('std', StandardScaler(), range(10)), ('label', LabelEncoderM(), (10, )) ])
  7.  !*OUFMUX • ,PZBNB5FUTVP͞Μ 7JTVBMJ[F%TDJFOUJGJDEBUBJOB1ZUIPOJDXBZMJLFNBUQMPUMJC • %ը૾ͷॲཧ΍ՄࢹԽ͕Ͱ͖Δ7JTVBMJ[BUJPO5PPM,JU 75, Λɺ/VNQZ഑ྻͰѻ͑Δ Α͏ʹͨ͠1Z7JTUBͱ͍͏ϥΠϒϥϦͷ঺հͰɺ1ZUIPO্Ͱ%ը૾Λ͜Ͷ͜Ͷ͢Δʹ

    ͸ॿ͔Γͦ͏ͳϥΠϒϥϦͰͨ͠ɻ τʔΫηογϣϯ΁ͷײ૝ ೔໨͸ϓϩع࢜ͷ୩߹ኍل͞Μͷ,FZOPUF͔Β࢝·Γɺσʔλ ෼ੳؔ࿈ͷηογϣϯΛத৺ʹฉ͍ͨ೔ 45 Conclusion We introduce the PyVista’s • Pythonic interface to VTK’s Python bindings • Filtering/plotting tools built for interactivity • Direct access to common VTK filters • Intuitive plotting routines with matplotlib similar syntax In this presentation, you can learn more about how PyVista wraps di↵erent VTK mesh types and how you can leverage powerful 3D plotting and mesh analysis tools. Highlights of the API include: Pythonic interface to VTK’s Python bindings Filtering/plotting tools built for interactivity (see Widgets) Direct access to common VTK filters (see Filters) Intuitive plotting routines with matplotlib similar syntax (see Plotting)
  8.  !*OUFMUX • ϒϥϯτ ϒʔΧʔࢯ͞Μ "1FSGFDUNBUDI • 1ZUIPOͷύλʔϯϚονΛ4DBMB΍3VTUͷΑ͏ͳʮNBUDIr DBTFʯߏจͰ࣮૷ͨ͠࿩ Ͱɺ࣮ࡍͷ࢖༻ྫΛࣔ͠ͳ͕ΒैདྷͷʮJGr

    FMTFʯߏจͱൺֱͯ͠εϚʔτʹΫʔϧʹ ࠇຐज़νοΫʹʁ͔͚ΔΑ͏ͳͱ͜ΖΛ঺հͯ͘͠Ε·ͨ͠ɻ͔ΒͷػೳͳͷͰૣ ͘࢖ͬͯΈ͍ͨͰ͢Ͷɻ τʔΫηογϣϯ΁ͷײ૝ ೔໨͸ύλʔϯϚονϯά։ൃ࿩͔Β࢝·Γɺσʔλ෼ੳҎ֎ͷ ڵຯ͋ΔηογϣϯΛத৺ʹฉ͍ͨ೔ Syntax The Design // Rust fn f(n: u64) -> u64 { match n { 0 | 1 => 1, _ => n * f(n - 1), } } // Scala def f(n: Int): Int = n match { case 0 | 1 => 1 case _ => n * f(n - 1) } # Python def f(n: int) -> int: match n: case 0 | 1: return 1 case _: return n * f(n - 1)
  9.  !*OUFMUX • TIJOZPSLF͞Μ ࣮ફ4USFBNMJU 'MBTL "*ϓϩδΣΫτͷϓϩτλΠϐϯά͔Βຊ൪ӡ༻·ͰΛ͍͍ײ͡ʹ͢Δ 1ZUIPOJDͳ΍Γ͔ͨ • 4USFBNMJUͱ'MBTLΛ࢖ͬͯɺಈ͘ΞϓϦέʔγϣϯΛαΫαΫ࡞͍͖ͬͯͳ͕Βɺվળ

    αΠΫϧΛΨϯΨϯճ͍ͯ͜͠͏ͱ͍͏঺հͰɺϓϩδΣΫτͱͯ͠΋ෆ࣮֬ੑͷଟ͍ ͱ͜ΖʹΞδϟΠϧͳ։ൃΛ౰͍͖ͯͯ·͠ΐ͏ͱ͍͏঺հͰͨ͠ɻ τʔΫηογϣϯ΁ͷײ૝ ೔໨͸ύλʔϯϚονϯά։ൃ࿩͔Β࢝·Γɺσʔλ෼ੳҎ֎ͷ ڵຯ͋ΔηογϣϯΛத৺ʹฉ͍ͨ೔ ʮ͍͍͔Μ͡ʹ͢ΔPythonicͳ΍Γ͔ͨʯ is ʮαΫοͱಈ͘΋ͷΛ࡞ͬͯ΍ͬͯ͜(ʯ ΨϯΨϯͱσϦόϦʔ͍ͯ͜͠͏ʂ AIϓϩδΣΫτʹඞཁͳελϯε • ෆ࣮֬ͳϓϩδΣΫτ͸Agileͳ΍ΓํͰղܾ͍ͯ͘͠ • σʔλαΠΤϯςΟετͱΤϯδχΞ͸ҧ͏ੜଶܥͷੜ͖෺ νʔϜϫʔΫΛେ੾ʹʂ ͜ͷൃදͰҰ؏͍ͯ͠Δߟ͑ํɾେ੾ʹͯ͠ΔࣄͷએݴͰ͢ ʢҟ࿦͸ೝΊΔʣ
  10.  !*OUFMUX • ͻΖ͞͡͞Μ ֆΛಡΉٕज़ 1ZUIPOʹΑΔΠϥετղੳ • Πϥετͷߏਤ΍ߏ੒ʹ͍ͭͯɺॳ৺ऀͰ΋Θ͔ΔΑ͏ͳஸೡͳઆ໌͔Βɺ࣮ࡍʹΠϥ ετղੳʹ͸ͲͷΑ͏ʹϥΠϒϥϦΛ͔͖͔ͭͬͯͨΛ঺հͯ͘͠ΕͨൃදͰͨ͠ɻ Πϥετ͔Θ͍͍ʂʣ

    τʔΫηογϣϯ΁ͷײ૝ ೔໨͸ύλʔϯϚονϯά։ൃ࿩͔Β࢝·Γɺσʔλ෼ੳҎ֎ͷ ڵຯ͋ΔηογϣϯΛத৺ʹฉ͍ͨ೔ Ϋϥε෼ྨث͕ͲͷྖҬΛ΋ͱʹը૾Λ෼ྨ͢Δ͔ΛՄࢹԽ͢Δ$MBTT"DUJWBUJPO.BQʹͯ࠶ݱɻ PythonͰয఺Λݕग़͢ΔᶄɿҰ෦ղઆ য఺ʮݟ׳ΕͨϞϊʯͷݕग़ʢUGLFSBTWJTʹͯ(SBE$". Λར༻ʣ # import libraries (ུ) # prepare model & input data model = Model(weights='imagenet', include_top=True) image = load_img(img_name, target_size=(224, 224)) X = preprocess_input(np.array(image)) # set loss & modifier to replace a softmax function def loss(output): return (output[0][cls_index]) def model_modifier(m): m.layers[-1].activation = tf.keras.activations.linear return m # generate heatmap with GradCAM++ gradcam = GradcamPlusPlus(model, model_modifier=model_modifier, clone=False) cam = gradcam(loss, img, penultimate_layer=-1) cam = normalize(cam) heatmap = np.uint8(cm.jet(cam[0])[..., :3] * 255) LFJTFOUGLFSBTWJTc(JUIVC
  11.  !*OUFMUX • ͕࣌ؒͳ͘શ෦ΛճΔ͜ͱ͸೉͔ͬ͠ ͨͷͰ͕͢ɺଟ͘ͷاۀ୲౰ͷํͱ ʮίϩφӔͰมΘͬͨಇ͖ํʯ΍ʮا ۀͷ࣋ͭϢχʔΫͳจԽʯͳͲͰ੝Γ ্͕Δ͜ͱ͕Ͱ͖·ͨ͠ɻ • ଟࠃ੶ͳࣾһ͕ॴଐ͢Δ)&//(&͞Μɺ

    ࠓճͷ(VJEF͔ΒͷϝοηʔδΛ͍ͨ ͩ͘·Ͱͷཪ࿩Λͯ͘͠Εͨ.JDSPTPGU ͞Μɺຖ೥ࢀՃܕͷήʔϜΛ४උͯ͠ ͘ΕΔ+9௨৴ࣾ͞Μɺ௕໺ͷ౔஍Ͱ 1ZUIPOίϛϡχςΟΛ׆ൃʹ͍ͯ͠Δ ೔ຊγεςϜٕݚ͞ΜͳͲͳͲɻ τʔΫηογϣϯҎ֎ͷ࣌ؒ͸ԿΛʁ اۀϒʔεΛճͬͯΈͨΓɺηογϣϯεϐʔΧʔʹ࣭໰ͨ͠Γɺ ࣗࣾͷεϙϯαʔϒʔεͰײ૝ΛޠͬͨΓ͍ͯ͠·ͨ͠ɻ اۀϒʔε ϒʔεπΞʔ ௨ৗ࣌ͷདྷ৔ ϒʔεπΞʔ࣌ͷདྷ৔ ׬શʹఢऻɾɾɾXX
  12.  !*OUFMUX • "TL'PS4QFBLFS • τʔΫηογϣϯऴྃޙͷ໿෼͸ɺൃදऀʹ௚઀࣭໰ͨ͠Γײ૝Λड़΂Δ͜ͱ͕Ͱ͖ Δ࣌ؒͰͨ͠ɻ • ൃද࣌ؒதʹ࣭໰Ͱ͖Ε͹ྑ͍ͷͰ͕͢ɺͳ͔ͳ͔͕࣌ؒ୹͍ͨΊ࣭໰Λ੔ཧ͍ͯ͠Δ ؒʹऴΘͬͯ͠·͏ࢲʹ͸͋Γ͕͍ͨ࣌ؒͰͨ͠ɻ

    τʔΫηογϣϯҎ֎ͷ࣌ؒ͸ԿΛʁ اۀϒʔεΛճͬͯΈͨΓɺηογϣϯεϐʔΧʔʹ࣭໰ͨ͠Γɺ ࣗࣾͷεϙϯαʔϒʔεͰײ૝ΛޠͬͨΓ͍ͯ͠·ͨ͠ɻ ͳΜͱ͔ൃදதʹ಄ͷ੔ཧ͕Ͱ͖࣭ͨ໰ ͜ͷ࣭໰Ҏ֎͸"TL'PS4QFBLFSͰ΍ͬͨΓ͠ ͯ·ͨ͠
  13.  !*OUFMUX ຖ೥Πϕϯτதʹɺࡢ೥౓·Ͱͷ׆ಈใࠂɺ ࠓޙͷܭը1Z$PO+1 ʹ͍ͭͯͳͲɺ ͜Ε͔Βͷ1Z$PO+1ʹ͍ͭͯɺཧࣄͱࢀՃ ऀΛަ͑ͯձٞΛ͍ͯ͠·͢ɻ Πϕϯτ౰೔ࢀՃͰ͖ͳ͔ͬͨίϯςϯπ ͜ͷଞʹ΋ʮϥϯνλΠϜηογϣϯʯ΍ʮ1Z$PO+1 ެ։ӡӦ

    ձٞʯͳͲ͕͋Γ·ͨ͠ɻ ϥϯνλΠϜηογϣϯ ެ։ӡӦձٞ ࠓճϓϥνφεϙϯαʔʹཱީิͨ͠ࡾࣾ୅ දऀʹΑΔύωϧσΟεΧογϣϯΛ࣮ࢪ͠ ͯɺίϩφӔͰͷಇ͖ํ΍1ZUIPOͱͷग़ձ ͍ʹ͍ͭͯ࿩͍͍ͯͨͩͯ͠·ͨ͠ɻ
  14.  !*OUFMUX • %JTDPSE ͱ ;PPNΛ༻͍ͨϋΠϒϦουͳମ੍ • ;PPN͸τʔΫηογϣϯผʹ෼͚ΒΕͨ෦԰ • %JTDPSE͸ࢀՃऀؒͷίϛϡχέʔγϣϯͱͯ͠੾Γ෼͚ΒΕͨମ੍

    • ΦϑϥΠϯͰ͔͠Ͱ͖ͳ͍ʮମݧʯΛɺΦϯϥΠϯͰ୅ସͰ͖Δʮମݧʯ΁ ੾Γସ͑ͨੵۃతͳࢪࡦ • ௌऺͷϦΞΫγϣϯΛνϟϯωϧͷεϨουͱͯ͠ྲྀ͢ํࣜ΁ • ϒʔεπΞʔʹΑ֤ͬͯεϙϯαʔͷձࣾ΁ͷ઀৮ػձ • ࠙਌ձ͸QJ[[BIVU͞Μͱ࿈ܞͯ͠ɺࢀՃऀ΁ͷϑʔυσϦόϦʔΦϯϥΠϯҿΈ΁ • ౰೔ͷࢀՃऀ࣭໰ɾཁ๬ରԠ • 1Z$PO+1Λָ͠ΜͰ΋Β͏ͨΊͷͰ͖ΔΞΠσΟΞΛܗʹ͢ΔӡӦύϫʔ ӡӦܦݧऀ໨ઢͰݟͨ1Z$PO+1 ഑৴Λ࢝Ίͱͯ͠ɺΦϯϥΠϯ্ͰͷࢀՃऀ༠ಋɺ֤Πϕϯτ঺ հɺӡӦ΁ͷ࣭໰ɾཁ๬ରԠͳͲɺεϜʔζͳΠϕϯτͰͨ͠
  15.  !*OUFMUX ü഑৴ଆΛ;PPNʹ౷Ұ͢Δ͜ͱͰࢀՃऀ΋ ඞཁͳ෦԰ʹҠಈ͢Δ·Ͱ͕ϦϯΫͭͰ Ͱ͖͍ͯ·ͨ͠ɻ üԻ੠ΛϚϧννϟϯωϧʹͯ͠,FZOPUF຋ ༁Λ͍ͯͨ͠ͷ͸ͱͯ΋͍͍ΞΠσΟΞͩ ͱࢥ͍·ͨ͠ɻ ӡӦܦݧऀ໨ઢͰݟͨ1Z$PO+1 ֤ձ৔ͱϦϯΫͨ͠%JTDPSEͷνϟϯωϧͰ͸ɺτʔΫηογϣ

    ϯ΁ͷײ૝͕ྲྀΕ͍ͯͯฉ͚ͩ͘Ͱͳ͘ࢀՃͰ͖Δܗʹ ;PPN %JTDPSE ü֤τʔΫηογϣϯͰͷײ૝͕֤νϟϯω ϧΛྲྀΕΔ͜ͱͰɺ:PVUVCF -JWFͷΑ͏ ͳࢀՃܕͷମݧ͕ͱͯ΋Α͔ͬͨͰ͢ɻ ü࣭໰Λνϟϯωϧ͔Β࢘ձ͕र্͍͛Δํ ࣜʹ͢Δ͜ͱͰɺ࣭໰΁ͷෑډΛ௿ͯ͘͠ ΑΓଟ͘ͷ࣭໰͕ू·ͬͨͷͰ͸ͳ͍͔ͱ ࢥͬͨΓ͠·ͨ͠ɻ
  16.  !*OUFMUX • ڈ೥͕;PPN੾Γ෼͚ͩͬͨͷʹର ͯ͠ɺ%JTDPSEͷΑ͏ͳ֤ϒʔεͷ ਓ਺ঢ়گ͕೺ѲͰ͖Δܗʹͳ͓ͬͨ ͔͛ͰɺؾܰʹೖΓ΍͔ͬͨ͢ͱࢥ ͍·ͨ͠ɻ • ελϯϓϥϦʔ΍ϒʔεπΞʔΛઃ

    ͚Δ͜ͱͰɺϒʔεʹཱͪدΔ͖ͬ ͔͚Λଟ͘࡞ͬͯ͘Εͨͷ͸ɺ͔ͳ Γ͋Γ͕͔ͨͬͨͰ͢ɻ ӡӦܦݧऀ໨ઢͰݟͨ1Z$PO+1 ϒʔεπΞʔ΍֤ϒʔεͷਓ਺ঢ়گ͕ࢀՃऀ͔Βݟ͑Δ͜ͱ͔Β ଍Λӡͼ΍͍͢ҹ৅
  17.  !*OUFMUX • νέοτߪೖஈ֊Ͱ഑ୡઌࢦఆͨ͠Γɺର৅۠Ҭ֎ͷ஍Ҭ͸ผҊ΋ݕ౼ͨ͠ Γ͢ΔͳͲɺ͔ͳΓؤுͬͨͱࢥ͍·͢ɻ • ࣮ࡍࢀՃऀͷ͏ͪɺ͏·͘ಧ͔ͳ͔ͬͨέʔε͕ͲΕ͘Β͍͋Δͷ͔ͳʁͱ ࢥͬͨͷͰɺ΋͠ৼΓฦΓͱ͔Ͱ͜ͷ࿩୊͕ग़͖ͯͨΒɺӡӦଆ͕ͲΕ͘Β ͍ෛ୲ͩͬͨͷ͔͸ฉ͍ͯΈ͍ͨͱ͜Ζɻ •

    ͪͳΈʹࢲ͸ର৅۠Ҭ֎ͰσϦόϦʔ͕೉͘͠அ೦͍ͯͨ͠ͷͰ͕͢ɺϐβ ςϩͷμϝʔδ͸େ͖͔ͬͨͷͰɺ݁ہυϛϊɾϐβ🍕པΈ·ͨ͠ɻඒຯ͠ ͔ͬͨͰ͢ɻ ԭೄʹ͸ϐβϋοτ͕ళฮ͋Δ΋ͷͷɺ͢΂ͯσϦόϦʔ͕ͳ͍ͨΊஅ ೦ɾɾɾϐβϋοτ͞ΜͲ͏ͧΑΖ͓͘͠ئ͍͠·͢🙇 ӡӦܦݧऀ໨ઢͰݟͨ1Z$PO+1 ࠙਌ձ͸ϐβϋοτ͞Μͱ࿈ܞͯ͠ɺࢀՃऀ΁ͷϑʔυσϦό ϦʔΦϯϥΠϯҿΈ΁
  18.  !*OUFMUX ࣾ಺͸ϓϥνφܾఆͷ࣌ʹେ੝Γ͕͋Γ ·͔͞ϓϥνφεϙϯαʔ௨Δͱ͸ࢥ͓ͬͯΒͣɺ֖Λ։͚ͯΈ ͨΒͲ͏΍Β໊ͩͨΔاۀʹڬ·Ε͍ͯͨ໛༷ ೥Ҏ্લ͔Β1Z$PO "1"$΍ 1Z$PO +1΁εϙϯαʔΛଓ͚͍ͯ Δݹࢀεϙϯαʔɻࢲ͕ॳΊͯࢀՃ

    ͨ͠1Z$PO͕೥ͩͬͨͷͰ͢ ͕ɺ೥ʹձ໊ࣾশ͕มΘͬͨ Β͘͠ɺͦΕΛϒʔεʹ༡ͼʹߦͬ ͨͱ͖ʹ஌ͬͯͼͬ͘Γɻ )&//(&גࣜձࣾ͞Μ ݴΘͣͱ΋஌Εͨ༗໊ͳاۀͰɺ )&//(&͞Μಉ༷ʹ1Z$PO +1΁ε ϙϯαʔΛଓ͚͍ͯΔݹࢀεϙϯ αʔɻࠓճͷ(VJEP͞Μ͔Βͷϝο ηʔδΛ໯͏·ͰʹճҎ্ϝʔϧ ͨ͠ͱ͔ͳΜͱ͔ɻ ೔ຊϚΠΫϩιϑτגࣜձࣾ͞Μ ͪΎΒσʔλגࣜձࣾ ձࣾ঺հ$.ͰಥવԭೄํݴΛ࿩͠ ࢝Ίɺԭೄݝ֎ࢀՃऀʹδϟϒΛ ଧ͍ͬͯ͘ελΠϧͷاۀɻ
  19.  !*OUFMUX • 1Z$PO+1͸τʔΫηογϣϯΛฉ͚͕ͩ͘શͯͰ͸ͳ͍ʂ • τʔΫηογϣϯҎ֎ʹ΋༷ʑͳίϯςϯπʹඈͼࠐΜͰΈΔ༐ؾ͕͋Ε͹ ָ͠Έ͸ഒ૿ʂ • 1Z$PO+1Λෆࣗ༝ͳָ͘͠Ή͜ͱ͕Ͱ͖Δͷ͸ɺӡӦελοϑਓਓͷؤ ுΓͷ͓͔͛ͩͬͨΓ͢ΔͷͰɺ࠷େݶͷײँΛ👏

    • ࢀՃऀͱͯ͠෺଍Γͳ͘ͳͬͨΒɺ࣍͸εϙϯαʔ΍ελοϑ΍ଞͷܗͰࢀ Ճͯ͠Έ·͠ΐ͏ʂ ·ͱΊʢ࠶ܝʣ 1Z$PO+1ͷָ͠Έํ͸ઍࠩສผɻࣗ෼ͳΓͷָ͠ΈํΛ୳͠ʹདྷ ೥΋ͥͻࢀՃͯ͠ΈΑ͏ʂ
  20.  !*OUFMUX • ೔࣌೥݄೔ ౔ • ձ৔۽ຊ৓ϗʔϧ • Ωʔϊʔτਗ਼ਫ઒ و೭͞Μ

    • $G1ΛઈࢍืूதͰ͢ʂ • 1Z$PO+1ͰൃදͰ͖ͳ͔ͬͨํ • ۝भʹΏ͔Γͷ͋Δํ • ۝भʹΏ͔Γͷͳ͍ํ • ͥͻͥͻ͓଴͍ͪͯ͠·͢ʂ 1Z$PO ,ZVTIVJO Λ։࠵͠·͢ʂ ࠓ೥౓͸1Z$PO ,ZVTIVΛ۽ຊ৓ϗʔϧʹ݄ͯ೔ ౔ ʹ։࠵ ͍ͨ͠·͢ʂ