Upgrade to Pro — share decks privately, control downloads, hide ads and more …

ビジネス利用における長期的な学習モデルの評価

Intel0tw5727
November 16, 2019

 ビジネス利用における長期的な学習モデルの評価

Intel0tw5727

November 16, 2019
Tweet

More Decks by Intel0tw5727

Other Decks in Technology

Transcript

  1. Who am I?(お前誰) • いんてる(@Intel0tw5727) です。 • 県内⼩中⾼⼤を経て今年新卒で⼊社 • ちゅらデータの筋⾁アナリスト

    • バーベル110kgスクワットできます • ダンベルプレス⽚⼿20kgできます • ⾃分の好きな筋⾁は上腕三頭筋 です © 2019 Chura DATA inc. PROPRIETARY & CONFIDENTIAL.
  2. AGENDA © 2019 Chura DATA inc. PROPRIETARY & CONFIDENTIAL. •

    ⻑期的な学習モデル開発に必要なもの • モデルをいろんな⽅⾯から評価する • ⾯倒なモデル評価を楽にする⽅法 今⽇話す内容
  3. ⻑期的なモデル開発に必要なもの • モデルの問題を早期に発⾒できて改善できる仕組み • 学習データが偏っている可能性 • 前処理が適切に⾏われていない • 学習⼿法が悪い •

    パラメータチューニングに失敗している • 各フローでの評価するポイントについて話します。 © 2019 Chura DATA inc. PROPRIETARY & CONFIDENTIAL.
  4. パラメータに注⽬した評価 • 学習に使⽤する⼿法を統⼀して、複数のパラメータチューニング 結果を⽐較する⽅法 © 2019 Chura DATA inc. PROPRIETARY

    & CONFIDENTIAL. 学習率(learning_late) 分岐する⽊の数(n_estimators) に注⽬してパラメータ評価を ⾏うことで、サイクルを回す 過程で局所解に陥ることを 避けるような働きがある
  5. パラメータに注⽬した評価のポイント • 収集して増え続けるデータでの学習に対して、データの異常検知を ⾏うことができる。 • 最適化されたパラメータを固定して、データを増える前後で学習させる ことで予期しない情報を含んだデータが増えているかを検知できる © 2019 Chura

    DATA inc. PROPRIETARY & CONFIDENTIAL. 学習率 = 0.05 分岐⽊数 = 1024 データ数 = 10000 学習⽇ = 2019-10-15 学習率 = 0.05 分岐⽊数 = 1024 データ数 = 15000 学習⽇ = 2019-11-15 学習率 = 0.05 分岐⽊数 = 1024 データ数 = 20000 学習⽇ = 2019-12-15 精度: 85% 精度: 87% 精度: 69%
  6. 理想的な開発環境 • これをDockerでドカドカしたい (希望・これからやる・コーナーで差をつけろ) © 2019 Chura DATA inc. PROPRIETARY

    & CONFIDENTIAL. 分析環境 コード管理 ワークフロー管理 学習モデル・パラメータ保存 モデル・パラメータ管理
  7. ⻑期的にモデルを評価すること • モデルの問題を早期に発⾒できて改善 • 経験則ではなくデータやモデルに基づいて修正できる • モデルの性能が良い・悪い根拠を様々なフローから解き明かす • ブラックボックスを少しでも解き明かすことで、⾃分の作ったモデルに ⾃信が⽣まれる

    • MLFlowを使うことでグラフィカルに性能評価ができる • 現状MLFlowを使っているだけなので、もっと便利な学習マネジメント ライブラリが出たら触ってみたいな © 2019 Chura DATA inc. PROPRIETARY & CONFIDENTIAL.
  8. Appendix • 超細かく説明してくれる神参考リンク • mlflowを使ってデータ分析サイクルの効率化する⽅法を考える • https://qiita.com/masa26hiro/items/574c48d523ed76e76a3b • MLflow 1.0.0

    リリース︕機械学習ライフサイクルを始めよう︕ • https://qiita.com/fam_taro/items/155912068ff475a53e44 • 機械学習で泣かないためのコード設計 • https://www.slideshare.net/takahirokubo7792/2018-97367311 © 2019 Chura DATA inc. PROPRIETARY & CONFIDENTIAL.