$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Ulster Research Seminar Series
Search
Javier Gonzalez-Sanchez
PRO
March 23, 2022
Research
0
460
Ulster Research Seminar Series
Ulster University
(School of Computing Research Seminar Series 2022)
Javier Gonzalez-Sanchez
PRO
March 23, 2022
Tweet
Share
More Decks by Javier Gonzalez-Sanchez
See All by Javier Gonzalez-Sanchez
CSC509 Lecture 15
javiergs
PRO
0
46
CSC305 Lecture 18
javiergs
PRO
0
280
CSC509 Lecture 14
javiergs
PRO
0
220
CSC305 Lecture 17
javiergs
PRO
0
340
CSC305 Lecture 16
javiergs
PRO
0
380
CSC305 Lecture 15
javiergs
PRO
0
250
CSC305 Lecture 14
javiergs
PRO
0
380
CSC509 Lecture 13
javiergs
PRO
0
270
CSC509 Lecture 12
javiergs
PRO
0
310
Other Decks in Research
See All in Research
"主観で終わらせない"定性データ活用 ― プロダクトディスカバリーを加速させるインサイトマネジメント / Utilizing qualitative data that "doesn't end with subjectivity" - Insight management that accelerates product discovery
kaminashi
14
13k
Remote sensing × Multi-modal meta survey
satai
4
630
[CV勉強会@関東 CVPR2025] VLM自動運転model S4-Driver
shinkyoto
3
690
[Devfest Incheon 2025] 모두를 위한 친절한 언어모델(LLM) 학습 가이드
beomi
2
890
「どう育てるか」より「どう働きたいか」〜スクラムマスターの最初の一歩〜
hirakawa51
0
1k
一人称視点映像解析の最先端(MIRU2025 チュートリアル)
takumayagi
6
4.3k
湯村研究室の紹介2025 / yumulab2025
yumulab
0
220
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
270
論文読み会 SNLP2025 Learning Dynamics of LLM Finetuning. In: ICLR 2025
s_mizuki_nlp
0
340
Mamba-in-Mamba: Centralized Mamba-Cross-Scan in Tokenized Mamba Model for Hyperspectral Image Classification
satai
3
260
まずはここから:Overleaf共同執筆・CopilotでAIコーディング入門・Codespacesで独立環境
matsui_528
2
810
[IBIS 2025] 深層基盤モデルのための強化学習驚きから理論にもとづく納得へ
akifumi_wachi
14
8k
Featured
See All Featured
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
15k
Rebuilding a faster, lazier Slack
samanthasiow
84
9.3k
GraphQLとの向き合い方2022年版
quramy
50
14k
Producing Creativity
orderedlist
PRO
348
40k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.2k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.6k
Become a Pro
speakerdeck
PRO
31
5.7k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.8k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
We Have a Design System, Now What?
morganepeng
54
7.9k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
141
34k
Code Review Best Practice
trishagee
74
19k
Transcript
Javier Gonzalez-Sanchez
[email protected]
javiergs.com Artificial Emotional Intelligence Building Empathetic Machines
Thank you
3 Emotions Motivation signals what humans care about is involved
in rational decision-making and action selection.
4 Motivation rational decision-making
5 Motivation
6 Outline Background 1 § Key Ideas § Context and
Workflow Sensing and Perception 2 § Data: Brainwaves, Facial Gestures, Eye Tracking, and More § Machine Learning Models Integration 3 § Fusion § Emotional Models: Ekman and Mehrabian Projects 4
7 Key Ideas Affect, affective state, emotion, emotional state, 👤
feelings 🧠, mood ⏱.
8 Key Ideas +P+A+D Engagement +P-A+D Meditation Concentration Thought Relaxation
+P+A-D Excitement Interest Dependence +P-A-D Starting Agreement Docility -P+A+D Disagreement Hostility -P-A+D Disdain -P+A-D Frustration Unsureness Anxiety -P-A-D Boredom
9 Key Ideas Many technologies may be improved by the
capability to recognize human affect and to respond adaptively by appropriately modifying their operation Empathy is the capacity to understand what another person is experiencing Emotion AI
10 Context Rosalind Picard MIT MediaLab HCI Affective Computing 1997
11 Context
12 Context Rosalind Picard MIT MediaLab Winslow Burleson University of
Arizona HCI Affective Computing 1997 SW Engineering Self-Adaptive Systems David Garlan CMU
13 Workflow
14 Outline Background 1 § Key Ideas § Context and
Workflow Sensing and Perception 2 § Data: Brainwaves, Facial Gestures, Eye Tracking, and More § Machine Learning Models Integration 3 § Fusion § Emotional Models: Ekman and Mehrabian Projects 4
15 1
16 Brain
17 Brain https://askabiologist.asu.edu/brain-regions
18 Brain Timestamp AF3 F7 F3 FC5 T7 P7 O1
O2 P8 T8 FC6 F4 F8 AF4 AccX AccY 101116112544901 4542.05 4831.79 4247.18 4690.26 4282.56 4395.38 4591.79 4569.23 4360 4570.77 4297.44 4311.28 4282.56 4367.18 1660 2003 101116112544901 4536.92 4802.05 4243.08 4673.85 4272.31 4393.33 4592.82 4570.26 4354.87 4570.26 4292.31 4309.74 4277.95 4370.77 1658 2002 101116112545010 4533.33 4798.97 4234.87 4669.74 4301.03 4396.92 4592.31 4570.77 4351.28 4561.03 4281.54 4301.54 4271.28 4363.59 1659 2003 101116112545010 4549.23 4839.49 4241.03 4691.28 4333.85 4397.95 4596.41 4567.18 4355.9 4556.41 4286.15 4306.15 4277.95 4369.74 1659 2003 101116112545010 4580 4865.64 4251.79 4710.26 4340 4401.54 4603.59 4572.82 4360 4558.46 4298.97 4324.62 4296.41 4395.9 1657 2004 101116112545010 4597.44 4860 4252.82 4705.64 4350.26 4412.31 4603.59 4577.44 4357.44 4555.9 4295.38 4329.23 4296.41 4414.36 1656 2005 101116112545010 4584.62 4847.69 4246.67 4690.26 4360 4409.23 4597.44 4569.74 4351.79 4549.74 4278.97 4316.92 4272.82 4399.49 1656 2006 101116112545010 4566.15 4842.05 4238.46 4684.1 4322.05 4389.74 4592.82 4566.67 4351.79 4549.74 4274.36 4310.26 4262.05 4370.77 1655 2005 101116112545010 4563.59 4844.62 4231.79 4687.69 4267.69 4387.69 4594.36 4580 4361.03 4556.41 4278.97 4310.77 4274.36 4370.77 1653 2006 101116112545010 4567.18 4847.18 4233.33 4688.72 4285.13 4409.23 4602.05 4589.23 4368.21 4560 4280.51 4310.77 4281.54 4390.26 1655 2004 101116112545010 4562.05 4840.51 4227.18 4673.85 4300 4405.13 4611.28 4601.03 4376.41 4561.54 4280 4303.59 4279.49 4374.87 1652 2000
19 Brain 14 channels 128 samples per second 1,792 values
por second 107,520 values per minute 6,451,200 values per hour
20 Brain Timestamp Short Term Excitement Long Term Excitement Engagement
Meditation Frustration 101116091145065 0.447595 0.54871 0.834476 0.333844 0.536197 101116091145190 0.447595 0.54871 0.834476 0.333844 0.536197 101116091145315 0.447595 0.54871 0.834476 0.333844 0.536197 101116091145440 0.487864 0.546877 0.834146 0.339548 0.54851 101116091145565 0.487864 0.546877 0.834146 0.339548 0.54851 101116091145690 0.487864 0.546877 0.834146 0.339548 0.54851 101116091145815 0.487864 0.546877 0.834146 0.339548 0.54851 101116091145940 0.521663 0.545609 0.839321 0.348321 0.558228 101116091146065 0.521663 0.545609 0.839321 0.348321 0.558228 101116091146190 0.521663 0.545609 0.839321 0.348321 0.558228 101116091146315 0.521663 0.545609 0.839321 0.348321 0.558228 101116091146440 0.509297 0.544131 0.84401 0.358717 0.546771 101116091146565 0.509297 0.544131 0.84401 0.358717 0.546771 101116091146690 0.509297 0.544131 0.84401 0.358717 0.546771 101116091146815 0.509297 0.544131 0.84401 0.358717 0.546771 101116091146941 0.451885 0.541695 0.848087 0.368071 0.533919
21 Brain 21 5 samples per second 5 affective states
25 values per second 1,500 values per minute 90,000 values per hour
22 Brain
23 ML • Neural Networks • Random Forest
2
25 Face (Ekman and Friesen 1978) – Facial Action Coding
System, 46 actions (plus head movements). 19 Lip Corner Depressor 26 Jaw Drop 27 Mouth Stretch
26 Face
27 Face Timestamp Agreement Concentrating Disagreement Interested Thinking Unsure 101116112838516
0.001836032 0.999917 1.79E-04 0.16485406 0.57114255 0.04595062 101116112838578 0.001447654 0.9999516 1.29E-04 0.16310683 0.5958921 0.042706452 101116112838672 5.97E-04 0 1.5E-04 0.44996294 0.45527613 0.00789697 101116112838766 2.46E-04 0 1.75E-04 0.77445686 0.32144752 0.001418217 101116112838860 1.01E-04 0 2.04E-04 0.93511915 0.21167138 2.53E-04 101116112838953 4.18E-05 0 2.38E-04 0.983739 0.13208677 4.52E-05 101116112839016 1.72E-05 0 2.78E-04 0.9960774 0.07941038 8.07E-06 101116112839110 7.1E-06 0 3.24E-04 0.99906266 0.046613157 1.44E-06 101116112839156 2.92E-06 0 3.77E-04 0.99977654 0.026964737 2.57E-07 101116112839250 1.21E-06 0 4.4E-04 0.9999467 0.015464196 4.58E-08 101116112839391 4.97E-07 0 5.12E-04 0.9999873 0.008824189 8.18E-09 101116112839438 2.05E-07 0 5.97E-04 0.999997 0.005020725 1.46E-09 101116112839547 8.43E-08 0 6.96E-04 0.9999993 0.002851939 2.6E-10 101116112839578 3.47E-08 0 8.11E-04 0.9999999 0.001618473 4.64E-11 101116112839688 1.43E-08 0 9.45E-04 0.99999994 9.18E-04 8.29E-12 101116112839781 5.9E-09 0 0.001101404 1 5.21E-04 1.48E-12 101116112839828 2.43E-09 0 0.001283521 1 2.95E-04 2.64E-13
28 Face 28 30 frames per second 10 inferences per
second 600 values per minute 36,000 values per hour
29 Face
30 ML • Support Vector Machine
3
32 Eye
33 Eye Timestamp GPX GPY Pupil Left Validity L Pupil
Right Validity R Fixation Event AOI 101124162405582 636 199 2.759313 0 2.88406 0 48 Content 101124162405599 641 207 2.684893 0 2.855817 0 48 Content 101124162405615 659 211 2.624458 0 2.903861 0 48 Content 101124162405632 644 201 2.636186 0 2.916132 0 48 Content 101124162405649 644 213 2.690685 0 2.831013 0 48 Content 101124162405666 628 194 2.651784 0 2.869714 0 48 Content 101124162405682 614 177 2.829281 0 2.899828 0 48 Content 101124162405699 701 249 2.780344 0 2.907665 0 49 Content 101124162405716 906 341 2.853761 0 2.916398 0 49 Content 101124162405732 947 398 2.829427 0 2.889944 0 49 Content 101124162405749 941 400 2.826602 0 2.881179 0 49 Content 101124162405766 938 403 2.78699 0 2.87948 0 49 KeyPress Content 101124162405782 937 411 2.803387 0 2.821803 0 49 Content 101124162405799 934 397 2.819166 0 2.871547 0 49 Content 101124162405816 941 407 2.811687 0 2.817927 0 49 Content 101124162405832 946 405 2.857419 0 2.857427 0 49 Content 101124162405849 0 0 -1 4 -1 4 49 Content
34 Eye 30 o 60 frames per second 30 o
60 inferences per second 1,800 o 3,600 values per minute 108,000 o 216, 000 values per hour
35 Eye
36 ML • Just Geometry
4
38 Pressure Sensor More
39 Galvanic Skin Conductance More
40 More
41 More Gonzalez-Sanchez et al, 2011
42 ML • Random Forest • Deep Learning
43 Outline Background 1 § Key Ideas § Context and
Workflow Sensing and Perception 2 § Data: Brainwaves, Facial Gestures, Eye Tracking, and More § Machine Learning Models Integration 3 § Fusion § Emotional Models: Ekman and Mehrabian Projects 4
44 Sparse Learning timestamp fixationIndex gazePointX gazePointY mappedFixationPoin tX mappedFixationPoin
tY fixationDuration Short Term Excitement Long Term Excitement Engagement/Boredom Meditation Frustration Conductance agreement concentrating 4135755652 0.436697 0.521059 0.550011 0.335825 0.498908 0.40169062 8 4135755659 213 573 408 570 408 216 4135755668 0.436697 0.521059 0.550011 0.335825 0.498908 4135755676 213 566 412 570 408 216 4135755692 213 565 404 570 408 216 4135755709 213 567 404 570 408 216 4135755714 4135755726 213 568 411 570 408 216 4135755742 213 568 409 570 408 216 4135755759 213 563 411 570 408 216 4135755761 4135755776 213 574 413 570 408 216 4135755792 213 554 402 570 408 216 4135755809 214 603 409 696 405 216 4135755824 4135755826 214 701 407 696 405 216 4135755842 214 697 403 696 405 216 4135755859 214 693 401 696 405 216 4135755876 214 700 402 696 405 216 4135755892 214 701 411 696 405 216 4135755909 214 686 398 696 405 216 4135755918 4135755926 214 694 399 696 405 216 4135755942 214 694 407 696 405 216 4135755959 214 698 404 696 405 216 4135755964 4135756027 0.436697 0.521059 0.550011 0.335825 0.498908 1 1
45 State Machine timestamp fixationIndex gazePointX gazePointY mappedFixationPoin tX mappedFixationPoin
tY fixationDuration Short Term Excitement Long Term Excitement Engagement/Boredom Meditation Frustration Conductance agreement concentrati ng 4135755652 213 574 414 570 408 216 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628 1 1 4135755659 213 573 408 570 408 216 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628 1 1 4135755668 213 573 408 570 408 216 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628 1 1 4135755676 213 566 412 570 408 216 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628 1 1 4135755692 213 565 404 570 408 216 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628 1 1 4135755709 213 567 404 570 408 216 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628 1 1 4135755714 213 567 404 570 408 216 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628 1 1 4135755726 213 568 411 570 408 216 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628 1 1 4135755742 213 568 409 570 408 216 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628 1 1 4135755759 213 563 411 570 408 216 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628 1 1 4135755761 213 563 411 570 408 216 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628 1 1 4135755776 213 574 413 570 408 216 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628 1 1 4135755792 213 554 402 570 408 216 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628 1 1 4135755809 214 603 409 696 405 216 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628 1 1 4135756027 215 728 406 804 387 183 0.436697 0.521059 0.550011 0.335825 0.498908 0.401690628 1 1
46 PAD
47 Outline Background 1 § Key Ideas § Context and
Workflow Sensing and Perception 2 § Data: Brainwaves, Facial Gestures, Eye Tracking, and More § Machine Learning Models Integration 3 § Fusion § Emotional Models: Ekman and Mehrabian Projects 4
48 Affect Recognition BCI and Gaze Points engagement
49 Affect Recognition BCI and Gaze Points frustration
50 Affect Recognition BCI and Gaze Points engagement
51 Affect Recognition BCI and Gaze Points frustration
52 Neuromarketing Chavez, M., Christopherson, R., Gonzalez-Sanchez, J., Atkinson, R.
User Experience. 2018
53 Avatar Gonzalez-Sanchez, J., Chavez, M., Gibson, D., and Atkinson,
R. Multimodal Affect Recognition in Virtual Worlds. ACII 2013
54 Projects Harris, A., Hoch, A., Kral, R., Teposte, M.,
Villa, A., et. al. Including affect-driven adaptation to the Pac-Man video game. ACM ISWC 2014
55 Projects Bernays, R., Mone, J., Yau, P., Murcia, M.,
Gonzalez-Sanchez, J., et al. Lost in the dark. ACM UIST 2012
56 Projects Hang, B., Loucks, S., Patel, P., Wiseman, K.
Capstone Project 2021-
57 Projects Rodriguez, J., Gonzalez-Sanchez, J., Del-Valle, C. Affect-Driven Robot-assisted
Walking Therapy 2019-
58 Projects VanLehn, K., Burleson, W., Chavez, M., Gonzalez-Sanchez, J.,
et al. The Affective Meta-Tutoring project ITS 2014 - 2018
59 Education Marketing Framework Tools Vision Health
60 Projects
61 Conclusion Let us rethink how scientist and engineers design
future software systems
62 Artificial Emotional Intelligence: Building Empathetic Machines Questions Javier Gonzalez-Sanchez
[email protected]
javiergs.com
Thank you
!"#$%&'(&)*+&'"#,$-.#/0#1'$213*1/4$ &'$4/,#$.3''&56#$57 For additional information, please visit http://dsp.acm.org/