Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Hashids and Perceptual hashes
Search
Jens Segers
April 29, 2015
Technology
2
130
Hashids and Perceptual hashes
PHP Ghent presentation
Jens Segers
April 29, 2015
Tweet
Share
More Decks by Jens Segers
See All by Jens Segers
Building a digital ID card for authentication
jenssegers
0
55
JSON Web Tokens in a microservice architecture (PHPBenelux)
jenssegers
0
530
JSON Web Tokens - PHP Antwerp
jenssegers
0
210
Testing API's with Behat
jenssegers
0
360
Apps for Ghent - Realo
jenssegers
0
320
An introduction to automated development environment and Laravel Homestead
jenssegers
0
240
Git 101
jenssegers
1
190
Other Decks in Technology
See All in Technology
顧客の言葉を、そのまま信じない勇気
yamatai1212
1
360
15 years with Rails and DDD (AI Edition)
andrzejkrzywda
0
200
Frontier Agents (Kiro autonomous agent / AWS Security Agent / AWS DevOps Agent) の紹介
msysh
3
180
Digitization部 紹介資料
sansan33
PRO
1
6.8k
クレジットカード決済基盤を支えるSRE - 厳格な監査とSRE運用の両立 (SRE Kaigi 2026)
capytan
6
2.8k
FinTech SREのAWSサービス活用/Leveraging AWS Services in FinTech SRE
maaaato
0
130
Kiro IDEのドキュメントを全部読んだので地味だけどちょっと嬉しい機能を紹介する
khmoryz
0
200
30万人の同時アクセスに耐えたい!新サービスの盤石なリリースを支える負荷試験 / SRE Kaigi 2026
genda
4
1.3k
We Built for Predictability; The Workloads Didn’t Care
stahnma
0
140
Bill One 開発エンジニア 紹介資料
sansan33
PRO
5
17k
AIエージェントに必要なのはデータではなく文脈だった/ai-agent-context-graph-mybest
jonnojun
0
140
Embedded SREの終わりを設計する 「なんとなく」から計画的な自立支援へ
sansantech
PRO
3
2.5k
Featured
See All Featured
The untapped power of vector embeddings
frankvandijk
1
1.6k
Bash Introduction
62gerente
615
210k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
Build your cross-platform service in a week with App Engine
jlugia
234
18k
Evolving SEO for Evolving Search Engines
ryanjones
0
130
Navigating Algorithm Shifts & AI Overviews - #SMXNext
aleyda
0
1.1k
GraphQLの誤解/rethinking-graphql
sonatard
74
11k
Agile Leadership in an Agile Organization
kimpetersen
PRO
0
83
Collaborative Software Design: How to facilitate domain modelling decisions
baasie
0
140
GitHub's CSS Performance
jonrohan
1032
470k
Leveraging LLMs for student feedback in introductory data science courses - posit::conf(2025)
minecr
0
150
The Illustrated Guide to Node.js - THAT Conference 2024
reverentgeek
0
260
Transcript
None
@jenssegers Jens Segers
Hashids hashids/hashids
youtube.com/watch?v=dQw4w9WgXcQ
Why id obfuscation? Hiding application internals Reduces chance for URL
guessing Hide number of users, articles, … More difficult for scrapers
Encoding ids $hashids = new Hashids\Hashids('salt'); $encodedId = $hashids->encode(123); $hashids
= new Hashids\Hashids('salt'); $decodedId = $hashids->decode('Mj3')[0]; Decoding ids
Perceptual hashes jenssegers/imagehash
Removing thumbnails and duplicate images
#b40b2980dcbd08a #c1e9ee950f0e56cc Different from cryptographic hashing
Perceptual fingerprint No avalanche effect Comparing hashes Similar images =
similar hashes
Hamming Distance Number of different individual bits gmp_hamdist(0b10100110001, 0b10100110101) =
1
None
None
None
None
0000000000000010000000110000011100001111000111110110111111111111
0000000000000010000000110000011100001111000111110110111111111111 1011000110001000111110000000010100100111110100000100010100001010
Calculating the hash Using a different implementation: use Jenssegers\ImageHash\ImageHash; $hasher
= new ImageHash; $hash = $hasher->hash('path/to/image.jpg'); use Jenssegers\ImageHash\Implementation\AverageHash; $hasher = new ImageHash(new AverageHash); $hash = $hasher->hash('path/to/image.jpg');
Comparing hashes Or use your database: $d = $hasher->compare('image1.jpg', 'image2.jpg');
$d = $hasher->distance($hash1, $hash2); SELECT BIT_COUNT(hash ^ :hash) as hamming_distance FROM images HAVING hamming_distance < 5
@jenssegers Jens Segers