$30 off During Our Annual Pro Sale. View Details »

Recent Work on the Lowest-Mass White Dwarfs

jjhermes
November 19, 2014

Recent Work on the Lowest-Mass White Dwarfs

Colloquium, 45 min. November 2014: Keele University, Keele, UK.

jjhermes

November 19, 2014
Tweet

More Decks by jjhermes

Other Decks in Science

Transcript

  1. JJ Hermes

    University of Warwick

    View Slide

  2. Mean Earth--Moon

    View Slide

  3. Motivation and Outline
    •  Extremely Low-Mass (ELM, <0.3 M¤
    ) White Dwarfs (WDs)

    –  Set Galactic gravitational wave foreground

    –  eLISA verification binaries

    –  Progenitors of Galactic exotica: merged WDs and subdwarfs, AM CVn systems,

    View Slide

  4. •  WDs: Burnt-out cores of all low-mass stars initially <8-10 M¤










    •  WDs are the endpoints of stellar evolution

    –  Their progenitors lost considerable mass

    White Dwarfs, the Quantum Dots

    View Slide

  5. Kleinman  et  al.  2013,  ApJS,  204,  5
    •  All WDs discussed today have pure hydrogen atmospheres (DA)

    –  4/5 of WDs are DA; strong gravitational settling

    •  Estimate WD masses from observed Balmer line profiles: Teff
    /log(g)
    He-Core WDs
    CO-Core WDs
    ONe-Core WDs

    Mass Distribution of Known White Dwarfs

    View Slide

  6. •  The Galaxy is not old enough for a
    single star to evolve into a

    View Slide

  7. Latest  ELM  Survey  release:
    Brown  et  al.  2013,  ApJ,  769,  66
    •  ELM Survey: u-g, g-r color selection from Sloan Digital Sky Survey (SDSS)

    •  Discovery spectroscopy from

    View Slide

  8. •  ELM Survey: SDSS u-g, g-r color selection

    •  Discovery spectroscopy from

    View Slide

  9. Discovery spectroscopy
    determines the binary and
    atmospheric parameters

    blue-shifted
    red-shifted

    Brown  et  al.  2012,  ApJ,  744,  142
    T
    eff
     =  10,540  ±  170  K
    log(g)  =  6.01  ±  0.06
    P
    orb
     =  87.996  ±  0.006  min
    K
    1
     =  508  ±  4  km  s-­‐‑1
    M
    2
     >  1.10  M¤    
     if  M
    1
     =  0.17  M¤
    t
    merge
     <  170  Myr
    J1741+6526: An 88-min WD+WD binary

    View Slide

  10. Asin(φ)
    = 0.50 ± 0.08 %


    Doppler beaming

    Acos(2φ)
    = 1.30 ± 0.08 %


    Ellipsoidal variations

    J1741+6526: An 88-min WD+WD binary
    •  Follow-up photometry yields
    further physical constraints

    View Slide

  11. •  Doppler beaming: Radiation is beamed toward our line of sight,
    proportional to how fast the source is moving (V):





    •  (Also a small factor for the

    View Slide

  12. •  Ellipsoidal variations: Changing projected area
    of a tidally distorted star

    •  Tidal bulge rotates once per orbit

    –  We see its oblique (fat) side

    View Slide

  13. J0751-0141: A New Eclipsing WD+WD Binary
    Kilic  et  al.  2014,  
    MNRAS,  438,  L26
    P
    orb
     =  115.22  min


    3.2% rel. amplitude

    View Slide

  14. Yellow: Our
    eight new
    tidally
    distorted
    ELM WDs



    Black:
    Eclipsing
    WD+WD
    binaries



    Pink:
    Eclipsing

    View Slide

  15. Some Open Questions Regarding ELM WDs
    – CNO flashing episodes and HR-diagram loops

    – Hydrogen-layer masses in He-core WDs

    – The ubiquity of metals in the lowest-gravity WDs

    – Tidal torques on binary inspiral

    View Slide

  16. •  Lowest-mass WDs
    (≤0.18 M¤
    ) have

    View Slide

  17. ELM WDs and Predicted CNO Flashes
    Althaus  et  al.  2013,  A&A,  557,  A19
    •  Two low-mass WDs of different masses often cross the same points in a
    T
    eff
    —log(g)  diagram

    •  There is a non-uniqueness to using T
    eff
    ,log(g) for ELM WD mass

    View Slide

  18. ELM WDs and Predicted CNO Flashes
    Althaus  et  al.  2013,  A&A,  557,  A19
    •  For example, take a 10,000 K, log(g) = 6.60 WD:

    View Slide

  19. Some Open Questions Regarding ELM WDs
    – CNO flashing episodes and HR-diagram loops

    – Hydrogen-layer masses in He-core WDs

    – The ubiquity of metals in the lowest-gravity WDs

    – Tidal torques on binary inspiral

    View Slide

  20. Discovery of Pulsations in Low-Mass WDs
    Hermes  et  al.  2012,  ApJ,  750,  L28
    Hermes  et  al.  2013,  ApJ,  765,  102
    Hermes  et  al.  2013,  MNRAS,  436,  3573
    Kilic  et  al.  2015,  MNRAS,  446,  26
    •  CNO flashes erode the hydrogen
    layer mass of ELM WDs

    •  An observational test would come
    from pulsating WDs: asteroseismology

    •  Since October 2011 we discovered
    the first five pulsating low-mass,

    View Slide

  21. Pulsating Hydrogen-Atmosphere (DA) WDs
    •  Global g-mode pulsations driven by a hydrogen partial ionization zone

    View Slide

  22. G117-B15A: A 0.59 M¤
    Pulsating CO-Core WD
    •  Stable pulsating WD

    •  dP/dt ~ 4 x 10-15 s s-1

    •  Main pulsation modes:

    –  P1
    = 215.2 s

    –  P2
    = 304.1 s

    –  P3
    = 270.5 s

    •  Can multiply the star’s
    frequencies by 300,000 to
    convert to audible range:

    Kepler  et  al.  2005,  ApJ,  634,  1311
    target

    comparison

    View Slide

  23. J1614+1912: A 0.20 M¤
    Pulsating ELM WD
    •  The pulsating ELM WD
    with the shortest-period
    variability

    •  Main pulsation modes:

    –  P1
    = 1262.7 s

    –  P2
    = 1184.1 s

    •  Scaling frequencies by
    300,000 to an audible
    range:

    Hermes  et  al.  2013,  MNRAS,  436,  3573
    target

    comparison

    View Slide

  24. J2228+3623: A 0.16 M¤
    Pulsating ELM WD
    •  The pulsating ELM WD
    with the longest-period
    variability

    •  Main pulsation modes:

    –  P1
    = 4181 s

    –  P2
    = 3252 s

    –  P3
    = 6229 s

    •  Scaling frequencies by
    300,000 to an audible
    range:

    target

    comparison

    Hermes  et  al.  2013,  MNRAS,  436,  3573

    View Slide

  25. J1112+1117: A 0.17 M¤
    Pulsating ELM WD
    Hermes  et  al.  2013,  ApJ,  765,  102
    •  Main pulsation modes:

    –  P1
    = 2258.5 s

    –  P2
    = 2539.7 s

    –  P3
    = 1884.6 s

    –  P4
    = 2855.7 s

    –  P5
    = 1792.9 s

    •  Scaling frequencies by
    300,000 to an audible
    range:

    target

    comparison

    View Slide

  26. Full Seismology Will Reveal ELM WD Structure
    •  We are currently only able to
    qualitatively match the periods
    to WD models

    •  Near to having a large grid of
    He-core WD models with
    different hydrogen layer masses
    to perform asteroseismology

    Van  Grootel  et  al.  2013,  ApJ,  762,  57
    MH
    /M* = 10-4

    MH
    /M* = 10-2

    J1840

    J1518

    J1518

    J1112

    Theoretical periods for ell=1 g-modes modes vs.
    Observed Periods

    View Slide

  27. Some Open Questions Regarding ELM WDs
    – CNO flashing episodes and HR-diagram loops

    – Hydrogen-layer masses in He-core WDs

    – The ubiquity of metals in the lowest-gravity WDs

    – Tidal torques on binary inspiral

    View Slide

  28. Lowest-Gravity WDs All Show Metals
    Hermes  et  al.  2014,  MNRAS,  444,  1674

    View Slide

  29. •  Roughly 1 in every 2-3 WDs we find has some metal pollution

    •  Metals should settle out of the high-surface-gravity atmosphere very
    quickly (of order days)

    •  Consensus: Metals are from accreted, tidally disrupted debris

    •  Abundances match bulk

    View Slide

  30. •  Ca II lines phase with the ~288 km/s RV of the Balmer lines

    –  Metals are photospheric, not interstellar

    •  We obtained an HST/COS

    View Slide

  31. •  This ELM WD is carbon deficient, just like planetary debris

    •  BUT: Oxygen abundance inconsistent with rocky accretion:

    View Slide

  32. GALEX J1717: A 5.9-hr, Metal-Rich He-WD+WD
    R
    1
     =  0.093  ±  0.013  R¤

    i  =  86.9  ±  0.4  deg
    P
    orb
     =  5.90724895(41)  hr
    -­‐‑20
    v
    rot
     =  50+30  km  s-­‐‑1

    P
    rot
     =  2.3+2.0  hr
    Hermes  et  al.  2014,  MNRAS,  444,  1674
    •  Prot
    < Porb
    but not yet formally significant

    •  Direct test of tidal synchronization!

    -­‐‑1.0

    View Slide

  33. Some Open Questions Regarding ELM WDs
    – CNO flashing episodes and HR-diagram loops

    – Hydrogen-layer masses in He-core WDs

    – The ubiquity of metals in the lowest-gravity WDs

    – Tidal torques on binary inspiral

    View Slide

  34. phase = 0

    •  We detected eclipses in April 2011

    •  This is the most compact detached binary
    system currently known!

    J0651+2844: A 12.75-min WD+WD Binary
    Brown  et  al.  2011,  ApJ,  737,  L23

    View Slide

  35. J0651+2844: A 12.75-min WD+WD Binary
    Average distance between the Earth and the Moon: 384,400 km

    View Slide

  36. (from Phase 0 to Phase 1 is 12.75 minutes)

    Hermes  et  al.  2012,  ApJ,  757,  L21
    P
    orb
     =  765.20644(95)  s
    K
    1
     =  616.9  ±  5.0  km  s-­‐‑1
    i  =  86.3  ±  1.0  deg
    T
    eff,1
     =  16,340  ±  260  K
    M
    1
     =  0.252  ±  0.04  M¤
    T
    eff,2
     =  10,370  ±  360  K
    M
    2
     =  0.50  ±  0.04  M¤
    J0651+2844: A 12.75-min WD+WD Binary

    View Slide

  37. Orbital Decay in J0651+2844
    After just 13 months we confirmed orbital decay from gravitational radiation.

    Hermes  et  al.  2012,  ApJ,  757,  L21

    View Slide

  38. We expect dPorb
    /dt = (-0.26 ± 0.05) ms/yr and observe (-0.2834 ± 0.0039) ms/yr!





















    – a 1.4% measurement!


    Orbital Decay in J0651+2844

    View Slide

  39. •  This 12.75-min WD+WD binary is decaying > 3.5 times faster than the
    7.75-hr Hulse-Taylor binary pulsar, which was the first indirect detection of
    gravitational radiation (1993 Nobel prize in physics)

    Weisberg  et  al.  2010,  ApJ,  722,  1030
    J0651+2844
    PSR B1913+16

    dP/dt = -0.283 ms/yr
    dP/dt = -0.076 ms/yr

    Orbital Decay in J0651+2844

    View Slide

  40. •  Gravity bends space; it effectively
    determines geometry of space

    •  General Relativity: Any mass in
    nonuniform, nonspherical motion
    emits gravitational radiation

    •  Ripples in space-time caused by
    gravitational radiation carry away
    energy

    •  This is an energy leak and acts

    View Slide

  41. •  J0651+2844 is an excellent verification sourcefor direct detection of

    View Slide

  42. •  Tidal torques should increase the rate of
    orbital decay in J0651+2844

    –  Additional angular momentum is lost from the
    orbit to spin-up the WDs to remain
    synchronized, leading to >5% faster rate of
    orbital decay (e.g.,  Piro  2011,  ApJ,  740,  L53;  Fuller  &  
    Lai  2012,  MNRAS,  421,  426)
    The Fate of the WDs in J0651+2844

    View Slide

  43. Conclusions
    •  Extremely Low-Mass (ELM, <0.3 M¤
    ) White Dwarfs (WDs) constrain
    the endpoints of stellar and binary evolution

    •  “Low-Mass White Dwarfs Need Friends”

    –  Close companions provide many ways to observationally constrain systems

    •  Pulsations allow us a new way to explore He-Core, ELM WD Interiors

    •  ELM WDs provide a unique test for tidal effects on binary inspiral

    •  The first directly detected gravitational waves and confirmed EM
    counterpart systems will likely be ELM WDs

    D. Berry, GSFC!

    View Slide

  44. View Slide

  45. Hermes  et  al.  2014,  ApJ,  792,  39

    View Slide

  46. Corsico  &  Althaus.  2014,  A&A,  569,  106

    View Slide

  47. View Slide