$30 off During Our Annual Pro Sale. View Details »

Theory-Led Control of Heat Transport in Thermoelectric Materials

Theory-Led Control of Heat Transport in Thermoelectric Materials

Presented at the Future Leaders Network for Nanoscale Energy Harvesting incubator event.

Jonathan Skelton

August 24, 2022
Tweet

More Decks by Jonathan Skelton

Other Decks in Science

Transcript

  1. J. M. Skelton
    Department of Chemistry, University of Manchester
    ([email protected])
    Theory-Led Control
    of Heat Transport in Thermoelectric Materials

    View Slide

  2. The global energy challenge
    Nanoscale Energy Harvesting, 24th Aug 2022 | Slide 2
    Dr Jonathan M. Skelton
    34 %
    26 %
    19 %
    18 %
    3 %
    1000 MW nuclear power plant:
    o 650 MW waste heat
    o 3 % ≈ 20 MW ≈ 50,000 homes
    300-500 W from exhaust gases:
    o 2 % lower fuel consumption
    o 2.4 Mt reduction in CO2
    Thermoelectric generators allow waste
    heat to be recovered as electricity
    TEGs with ~3 % energy recovery (𝑍𝑇 = 1) are
    considered industrially viable
    1. Provisional UK greenhouse gas emissions national statistics (published June 2020)
    2. EPSRC Thermoelectric Network Roadmap (2018)

    View Slide

  3. Thermoelectric materials
    Nanoscale Energy Harvesting, 24th Aug 2022 | Slide 3
    Dr Jonathan M. Skelton
    𝑍𝑇 =
    𝑆2𝜎
    𝜅ele
    + 𝜅lat
    𝑇
    𝑆 - Seebeck coefficient
    𝜎 - electrical conductivity
    𝜅ele
    - electronic thermal conductivity
    𝜅lat
    - lattice thermal conductivity
    G. Tan et al., Chem. Rev. 116 (19), 12123 (2016)

    View Slide

  4. Acknowledgements
    CMD29, 23rd August 2022 | Slide 4
    Dr Jonathan M. Skelton
    ... plus mentors and collaborators too
    numerous to mention

    View Slide

  5. Modelling thermal conductivity
    Nanoscale Energy Harvesting, 24th Aug 2022 | Slide 5
    Dr Jonathan M. Skelton
    A. Togo et al., Phys. Rev. B 91, 094306 (2015)
    𝜿latt
    (𝑇) =
    1
    𝑁𝑉0

    𝜆
    𝜿𝜆
    (𝑇)
    1
    𝑁𝑉0

    𝜆
    𝐶𝜆
    (𝑇)𝒗𝜆
    ⊗ 𝒗𝜆
    𝜏𝜆
    (𝑇)
    The simplest model for 𝜅latt
    is the single-mode relaxation time approximation (SM-RTA) - a
    closed solution to the phonon Boltzmann transport equations
    Modal heat capacity
    Mode group velocity
    𝜕𝜔λ
    𝜕𝐪
    Average over phonon
    modes λ
    Phonon MFP
    Mode lifetime
    𝜏λ
    =
    1
    2Γλ
    𝚲𝜆
    𝑇 = 𝒗𝜆
    𝜏𝜆
    𝑇

    View Slide

  6. Modelling thermal conductivity
    Nanoscale Energy Harvesting, 24th Aug 2022 | Slide 6
    Dr Jonathan M. Skelton
    A. Togo et al., Phys. Rev. B 91, 094306 (2015)
    J. Tang and J. M. Skelton, J. Phys.: Condens. Matter 33 (16), 164002 (2021)
    CoSb3

    View Slide

  7. Modelling thermal conductivity
    Nanoscale Energy Harvesting, 24th Aug 2022 | Slide 7
    Dr Jonathan M. Skelton
    J. Tang and J. M. Skelton, J. Phys.: Condens. Matter 33 (16), 164002 (2021)

    View Slide

  8. Modelling thermal conductivity
    Nanoscale Energy Harvesting, 24th Aug 2022 | Slide 8
    Dr Jonathan M. Skelton
    A. Gold-Parker et al., PNAS 115 (47), 11905 (2018)
    GaAs MAPbI3

    View Slide

  9. Modelling thermal conductivity
    Nanoscale Energy Harvesting, 24th Aug 2022 | Slide 9
    Dr Jonathan M. Skelton
    CoSb3
    CoSb3
    J. Tang and J. M. Skelton, J. Phys.: Condens. Matter 33 (16), 164002 (2021)

    View Slide

  10. Modelling thermal conductivity
    Nanoscale Energy Harvesting, 24th Aug 2022 | Slide 10
    Dr Jonathan M. Skelton
    CoSb3
    CoSb3
    J. Tang and J. M. Skelton, J. Phys.: Condens. Matter 33 (16), 164002 (2021)

    View Slide

  11. 𝒗𝜆
    vs. 𝜏𝜆
    : the CRTA model
    Nanoscale Energy Harvesting, 24th Aug 2022 | Slide 11
    Dr Jonathan M. Skelton
    Consider again the SM-RTA model:
    𝜿latt
    =
    1
    𝑁𝑉0

    𝜆
    𝜿𝜆
    =
    1
    𝑁𝑉0

    𝜆
    𝐶𝜆
    𝒗𝜆
    ⊗ 𝒗𝜆
    𝜏𝜆
    Replace the 𝜏𝜆
    with a constant lifetime (relaxation time) 𝜏CRTA defined as follows:
    𝜿latt
    𝜏CRTA
    =
    1
    𝑁𝑉0

    𝜆
    𝜿𝜆
    𝜏𝜆
    =
    1
    𝑁𝑉0

    𝜆
    𝐶𝜆
    𝒗𝜆
    ⊗ 𝒗𝜆
    𝜿latt

    1
    𝑁𝑉0

    𝜆
    𝐶𝜆
    𝒗𝜆
    ⊗ 𝒗𝜆
    × 𝜏CRTA
    HA
    AH
    HA AH
    J. Tang and J. M. Skelton, J. Phys.: Condens. Matter 33 (16), 164002 (2021)

    View Slide

  12. 𝒗𝜆
    vs. 𝜏𝜆
    : Si clathrates
    Nanoscale Energy Harvesting, 24th Aug 2022 | Slide 12
    Dr Jonathan M. Skelton
    B. Wei et al., in preparation

    View Slide

  13. 𝒗𝜆
    vs. 𝜏𝜆
    : Si clathrates
    Nanoscale Energy Harvesting, 24th Aug 2022 | Slide 13
    Dr Jonathan M. Skelton
    B. Wei et al., in preparation
    𝜿latt

    1
    𝑁𝑉0

    𝜆
    𝐶𝜆
    𝒗𝜆
    ⊗ 𝒗𝜆
    × 𝜏CRTA

    View Slide

  14. 𝒗𝜆
    vs. 𝜏𝜆
    : Si clathrates
    Nanoscale Energy Harvesting, 24th Aug 2022 | Slide 14
    Dr Jonathan M. Skelton
    𝜿 (W m-1 K-1)
    Τ
    𝜿 𝝉𝐂𝐑𝐓𝐀
    (W m-1 K-1 ps-1) 𝝉𝐂𝐑𝐓𝐀 (ps)
    d-Si 136.24 5.002 27.24
    oC24 40.92 2.295 17.83
    K-II / C-I 43.54 0.829 52.52
    K-V / C-VI 36.29 0.815 44.53
    K-VII / C-V 31.16 0.770 40.45
    C-II 6.33 0.458 13.81
    Spacegroup 𝒏𝐚
    𝐹𝑑ത
    3𝑚 2
    𝐶𝑚𝑐𝑚 12
    𝑃𝑚ത
    3𝑚 46
    𝐶𝑚𝑚𝑚 40
    𝑃63
    /𝑚𝑚𝑐 68
    𝐹𝑑ത
    3𝑚 34
    With the exception of the Clathrate-II structure, the harmonic Τ
    𝜿 𝜏CRTA term correlates with:
    (1) the size of the primitive cell (𝑛a
    ); and
    (2) the spacegroup (crystal symmetry)
    Implies low group velocities are favoured by complex structures with large primitive cells
    and/or low symmetry
    B. Wei et al., in preparation

    View Slide

  15. Analysing 𝜏𝜆
    : phonon linewidths
    Nanoscale Energy Harvesting, 24th Aug 2022 | Slide 15
    Dr Jonathan M. Skelton
    Γ𝜆
    (𝑇) = ෍
    𝜆′𝜆′′
    Φ−𝜆𝜆′𝜆′′
    2 × {
    𝑛𝜆′
    (𝑇) − 𝑛𝜆′′
    (𝑇) 𝛿 𝜔 + 𝜔𝜆′
    − 𝜔𝜆′′
    − 𝛿 𝜔 − 𝜔𝜆′
    + 𝜔𝜆′′ +
    𝑛𝜆′
    (𝑇) + 𝑛𝜆′′
    (𝑇) + 1 𝛿 𝜔 − 𝜔𝜆′
    − 𝜔𝜆′′
    }
    Collision
    Decay
    Three-phonon interaction strength - includes
    conservation of momentum(“anharmonicity”)
    Conservation of energy
    (“selection rules”)
    A. Togo et al., Phys. Rev. B 91, 094306 (2015)

    View Slide

  16. Analysing 𝜏𝜆
    : phonon linewidths
    Nanoscale Energy Harvesting, 24th Aug 2022 | Slide 16
    Dr Jonathan M. Skelton
    A. Togo et al., Phys. Rev. B 91, 094306 (2015)
    Approximate expression for Γ𝜆
    :
    With:
    Γ𝜆
    (𝑇) ≈
    18𝜋
    ℏ2

    𝑃𝑁2
    (𝒒𝜆
    , 𝜔𝜆
    , 𝑇)
    𝑁2
    𝒒𝜆
    , 𝜔𝜆
    , 𝑇 = 𝑁
    2
    (1) 𝒒𝜆
    , 𝜔𝜆
    , 𝑇 + 𝑁
    2
    (2) 𝒒𝜆
    , 𝜔𝜆
    , 𝑇
    𝑁
    2
    (1) 𝒒𝜆
    , 𝜔𝜆
    , 𝑇 =
    1
    𝑁

    𝜆′𝜆′′
    ∆(−𝒒𝜆
    + 𝒒𝜆′
    + 𝒒𝜆′′
    ) 𝑛𝜆′
    (𝑇) − 𝑛𝜆′′
    (𝑇) ×
    𝛿 𝜔 + 𝜔𝜆′
    − 𝜔𝜆′′
    − 𝛿 𝜔 − 𝜔𝜆′
    + 𝜔𝜆′′
    𝑁
    2
    (2) 𝒒𝜆
    , 𝜔𝜆
    , 𝑇 =
    1
    𝑁

    𝜆′𝜆′′
    ∆(−𝒒𝜆
    + 𝒒𝜆′
    + 𝒒𝜆′′
    ) 𝑛𝜆′
    (𝑇) + 𝑛𝜆′′
    (𝑇) + 1 𝛿 𝜔 − 𝜔𝜆′
    − 𝜔𝜆′′

    View Slide

  17. Analysing 𝜏𝜆
    Nanoscale Energy Harvesting, 24th Aug 2022 | Slide 17
    Dr Jonathan M. Skelton
    B. Wei et al., in preparation
    Γ𝜆
    (𝑇) ≈
    18𝜋
    ℏ2

    𝑃𝑁2
    (𝒒𝜆
    , 𝜔𝜆
    , 𝑇)

    View Slide

  18. Workflow
    Nanoscale Energy Harvesting, 24th Aug 2022 | Slide 18
    Dr Jonathan M. Skelton
    𝜿latt
    (𝑇)
    Τ
    𝜿 𝜏CRTA 𝜏CRTA

    𝑁2

    𝑃
    Phonopy + Phono3py
    A. Togo and I. Tanka, Scr. Mater. 108, 1 (2015)
    A. Togo et al., Phys. Rev. B 91, 094306 (2015)

    View Slide

  19. 𝒗𝜆
    vs. 𝜏𝜆
    : other TEs
    Nanoscale Energy Harvesting, 24th Aug 2022 | Slide 19
    Dr Jonathan M. Skelton
    𝜅 [W m-1 K-1]
    Τ
    𝜅 𝝉𝐂𝐑𝐓𝐀
    [W m-1 K-1 ps-1] 𝝉𝐂𝐑𝐓𝐀 [ps]
    Si 136.24 5.002 27.2
    SnS 2.15 0.718 3.00
    SnSe 1.58 0.372 4.23
    CoSb3
    9.98 0.273 36.6
    Bi2
    S3
    (Pnma) 0.90 0.423 2.14
    Bi2
    Se3
    (R-3m) 1.82 0.293 6.20
    Bi2
    Te3
    (R-3m) 0.87 0.199 4.41
    J. M. Skelton, J. Mater. Chem. C 9, 11772 (2021)
    J. Tang and J. M. Skelton, J. Phys.: Condens. Matter 33 (16), 164002 (2021)
    J. Cen, I. Pallikara and J. M. Skelton, Chem. Mater. 33 (21), 8404 (2021)
    B. Wei et al., in preparation

    View Slide

  20. Reducing 𝒗𝜆
    I: alloying
    Nanoscale Energy Harvesting, 24th Aug 2022 | Slide 20
    Dr Jonathan M. Skelton
    C.-C. Lin et al., Chem. Mater. 29 (12), 5344 (2017)
    SnSe
    15-20 % S

    View Slide

  21. Reducing 𝒗𝜆
    I: alloying
    Nanoscale Energy Harvesting, 24th Aug 2022 | Slide 21
    Dr Jonathan M. Skelton
    54.2 % ↓
    Sn(S0.1875
    Se0.8125
    )
    SnSe
    J. M. Skelton, J. Mater. Chem. C 9, 11772 (2021)

    View Slide

  22. Reducing 𝒗𝜆
    II: discordant doping
    Nanoscale Energy Harvesting, 24th Aug 2022 | Slide 22
    Dr Jonathan M. Skelton
    H. Xie et al., J. Am. Chem. Soc. 141 (47), 18900 (2019)

    View Slide

  23. Reducing 𝜏𝜆
    I: “rattler” TEs
    Nanoscale Energy Harvesting, 24th Aug 2022 | Slide 23
    Dr Jonathan M. Skelton
    Schwartz and Walker, Phys. Rev. B 155, 959 (1967)
    E. S. Toberer et al., J. Mater. Chem. 21, 15843 (2011)
    J. Tang and J. M. Skelton, J. Phys.: Condens. Matter 33 (16), 164002 (2021)
    “One phonon” model for resonant scattering:
    𝜏−1 = ෍
    𝑖
    𝑐𝑖
    𝜔2𝑇2
    𝜔𝑖
    2 − 𝜔2 2
    + 𝛾𝑖
    𝜔𝑖
    2𝜔2

    View Slide

  24. Reducing 𝜏𝜆
    II: hybrid TEs (?)
    Nanoscale Energy Harvesting, 24th Aug 2022 | Slide 24
    Dr Jonathan M. Skelton
    A. Gold-Parker et al., PNAS 115 (47), 11905 (2018)

    View Slide

  25. Workflow
    Nanoscale Energy Harvesting, 24th Aug 2022 | Slide 25
    Dr Jonathan M. Skelton
    𝜿latt
    (𝑇)
    Τ
    𝜿 𝜏CRTA 𝜏CRTA

    𝑁2

    𝑃
    𝑺(𝑛, 𝑇) 𝝈(𝑛, 𝑇) 𝜿el
    (𝑛, 𝑇)
    Phonopy + Phono3py AMSET
    𝑍𝑇(𝑛, 𝑇)
    A. Togo and I. Tanka, Scr. Mater. 108, 1 (2015)
    A. Togo et al., Phys. Rev. B 91, 094306 (2015)
    A. M. Ganose et al., Nature Comm. 12, 2222 (2021)

    View Slide

  26. Predicting 𝒁𝑻
    Nanoscale Energy Harvesting, 24th Aug 2022 | Slide 26
    Dr Jonathan M. Skelton
    J. M. Flitcroft et al., Solids 3 (1), 155 (2022)

    View Slide

  27. Challenges and opportunities
    Nanoscale Energy Harvesting, 24th Aug 2022 | Slide 27
    Dr Jonathan M. Skelton
    D. W. Davies et al., Chem 1 (4), 617 (2016)

    View Slide

  28. Challenges and opportunities
    Nanoscale Energy Harvesting, 24th Aug 2022 | Slide 28
    Dr Jonathan M. Skelton
    W. Rahim et al., J. Mater. Chem. A 8, 16405 (2020)
    W. Rahim et al., J. Mater. Chem. A 9, 20417 (2021)
    K. Brlec et al., J. Mater. Chem. A 10, 16813 (2022)
    𝛼-Bi2
    Sn2
    O7
    𝑛 = 1.73 × 1019 cm-3
    𝑍𝑇 = 0.36 (385 K)
    Ca4
    Sb2
    O / Ca4
    Bi2
    O
    𝑝 = 4.64 / 2.15 × 1019 cm-3
    𝑍𝑇 = 1.58 / 2.14 (1000 K)
    Y2
    Ti2
    O5
    S2
    𝑛 = 2.37 × 1020 cm-3
    𝑍𝑇 = 1.18 (1000 K)

    View Slide

  29. Challenges and opportunities
    Nanoscale Energy Harvesting, 24th Aug 2022 | Slide 29
    Dr Jonathan M. Skelton

    View Slide

  30. Challenges and opportunities
    Nanoscale Energy Harvesting, 24th Aug 2022 | Slide 30
    Dr Jonathan M. Skelton
    Some questions to consider (definitely not exhaustive...):
    1. Is there a “killer” application of TEs that we should target?
    2. If so, what are the parameters?
    • Operating temperature and target 𝑍𝑇?
    • Target cost per device?
    • Constraints on elemental composition?
    • Constraints on synthesis/device fabrication for scale up?
    3. How can theory and experiment best work together?
    • Is modelling in a position to provide actionable suggestions to improve 𝑍𝑇?
    • Would it be possible(/useful) to use modelling to screen candidates to narrow the
    focus of experiments?
    • Are existing theoretical techniques sufficient, or is more development needed (e.g.
    faster, cheaper, easier to use, capability to model new things ...)?

    View Slide

  31. https://bit.ly/3AjphfB
    These slides are available on Speaker Deck:

    View Slide