Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
LangfuseでAIエージェントの 可観測性を高めよう!/Enhancing AI Agen...
Search
Junya Miyake
April 16, 2025
Technology
1
530
LangfuseでAIエージェントの 可観測性を高めよう!/Enhancing AI Agent Observability with Langfuse!
2025-4-16に開催された ML OpsコミュニティのAI AgentOps LT大会でお話しした内容です。
https://mlops.connpass.com/event/347046/
Junya Miyake
April 16, 2025
Tweet
Share
More Decks by Junya Miyake
See All by Junya Miyake
BEYOND THE RAG🚀 ~とりあえずRAG?を超えていけ! 本当に使えるAIエージェント&生成AIプロダクトを目指して~ / BEYOND-THE-RAG-Toward Practical-GenerativeAI-Products-AOAI-DevDay-2025
jnymyk
4
790
完全に理解した!生成AI自社プロダクトのアジャイル開発の進め方!/ Fully understood! Agile tips for developing our generative AI product!(AOAI Dev Day)
jnymyk
5
2.6k
AzureでRAGをガンガン試行錯誤してみて得たナレッジを紹介します!/Azure RAG knowledge share
jnymyk
25
9.3k
GitHub Actions & オートスケールするSelf-hosted runnerで実現する KAGのみんなのCI/CD
jnymyk
5
1.5k
KDDIのTech blogを爆速レスポンスでつくったよ
jnymyk
3
260
Other Decks in Technology
See All in Technology
從裝潢設計圖到 Home Assistant:打造智慧家庭的實戰與踩坑筆記
kewang
0
160
AIと共に開発する時代の組織、プロセス設計 freeeでの実践から見えてきたこと
freee
3
520
Dart and Flutter MCP serverで実現する AI駆動E2Eテスト整備と自動操作
yukisakai1225
0
220
激動の2025年、Modern Data Stackの最新技術動向
sagara
0
1.2k
龍昌餃子で理解するWebサーバーの並行処理モデル - 東葛.dev #9
kozy4324
1
140
ユーザーストーリー x AI / User Stories x AI
oomatomo
0
150
よくわからない人向けの IAM Identity Center とちょっとした落とし穴
kazzpapa3
2
680
データ組織ゼロから投資を得るまでの軌跡と未来図 〜AIの前にやるべきこと〜 / Building a Data Organization from Scratch: The Journey to Securing Investment and a Vision for the Future
kaonavi
0
110
Logik: A Free and Open-source FPGA Toolchain
omasanori
0
270
Flutterコントリビューションのススメ
d_r_1009
1
330
Sansan BIが実践する AI on BI とセマンティックレイヤー / data_summit_findy
sansan_randd
0
130
Flutterで実装する実践的な攻撃対策とセキュリティ向上
fujikinaga
1
290
Featured
See All Featured
Docker and Python
trallard
46
3.6k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.2k
Optimising Largest Contentful Paint
csswizardry
37
3.5k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.5k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
Faster Mobile Websites
deanohume
310
31k
Building a Scalable Design System with Sketch
lauravandoore
463
33k
Leading Effective Engineering Teams in the AI Era
addyosmani
8
1.1k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
658
61k
Designing Experiences People Love
moore
142
24k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.3k
jQuery: Nuts, Bolts and Bling
dougneiner
65
8k
Transcript
AI AgentOps LT大会!!! LT#6 LangfuseでAIエージェントの 可観測性を高めよう! 2025.04.16 KDDIアジャイル開発センター株式会社(KAG) MJ (三宅
潤也 @jnymyk)
1 KDDI Agile Development Center Corporation 結論 • LangfuseでAIエージェントを見える化しよう (可観測性を高
めよう!) • チームやプロジェクトに応じて適切なLLM Opsツールを選択しよ う! ◦ Langfuseじゃなくても可観測性が担保できればどんなツールでもOK! • AIがどのような情報を受け取って、どんな処理をしているのか? 目的を達成するまでのプロセスやコストを適切に把握する必要が ある。(AIでも人でもこれは一緒) ◦ AIエージェントの開発・運用を持続可能な活動にしよう
2 KDDI Agile Development Center Corporation 自己紹介 • 三宅 潤也
Miyake Junya(@jnymyk) • MJ(えむじぇー)という芸人ネームで最近活動し 始めました!まずはXとSlackから ◦ コミュニティで三宅かぶり(ZENアーキテクツ三宅さん)、今日もトップバッターの @zawakinさんも三宅さん・・・ ◦ 社内でJunya Miyakeの字面かぶり(JunXX MiyaXXまで同じ)による誤爆メンショ ン多数・・・ • KDDIアジャイル開発センター(KAG)のスクラムマスター/エンジニア • チーム開発, クラウド(Azure/AWS), CI/CD, 生成AI/LLMアプリ開発が好 きです New!!!
3 KDDI Agile Development Center Corporation なぜ、AI AgentOpsでObservability ? •
複雑なマルチステップでの失敗要因を特定するため ◦ Traceで各ステップの入力・出力・LLM呼び出しを可視化 ◦ バグ・ハルシネーションを素早く特定
4 KDDI Agile Development Center Corporation なぜ、AI AgentOpsでObservability ? •
精度とコストのトレードオフのバランスを取るため ◦ リアルタイムでコストやレイテンシを見える化 ◦ 高コストな呼び出しを抑制しながら精度を検証
5 KDDI Agile Development Center Corporation AI AgentOpsツールとしてのLangfuseとは? • Langfuseとは?
◦ 生成AI(LLM)アプリケーション向けのOSS監視・ 分析プラットフォーム ◦ Self hosting or Cloudを選択可能。 • 複数人でクローズドな環境で利用するならSelf hosting • Self hostingは構築・継続メンテが大変なので、プラット フォームエンジニアリングチームで共通基盤にできると ベスト
6 KDDI Agile Development Center Corporation AI AgentOpsツールとしてのLangfuseとは? • Langfuseで出来ること
◦ トレース ◦ コスト追跡 ◦ LLMアプリケーションのパフォーマンス監視 ◦ プロンプトの管理 ◦ ユーザーフィードバックの収集と分析
7 KDDI Agile Development Center Corporation デモ • LangGraphで簡易的なQA AIエージェントを実装
• 問い合わせに対して複数のロールのエージェントが対応して目的を達成する までの過程をLangfuseで見える化
8 KDDI Agile Development Center Corporation デモ
9 KDDI Agile Development Center Corporation 実際のプロジェクトとLangfuseのユースケース • 社内問い合わせ業務の生成AIによる業務効率化 ◦
営業・SEからサービス企画部門へのサービス仕様・販売施策・契約手続等 の社内問い合わせ業務で生成AIを活用 ◦ 社内ドキュメントでRAGするAIチャット →正しい検索先を見てるか? →社内ドキュメント更新時のAI回答の継続的な精度評価
10 KDDI Agile Development Center Corporation 実際のプロジェクトとLangfuseのユースケース • 全社員向けの生成AIチャットへのDeep Research機能の組み込み
◦ Web検索, 社内文書を取り込んだベクトルDBへの検索 ◦ 単に検索結果の一部をコンテキストとして渡すのではなく、必 要な情報が揃ってレポートできるまで何度も検索を繰り返す →何回検索を繰り返して回答すると納得感のあるレポートを生成 できるか?を見極め →検索の繰り返し回数 vs コストのバランス
11 KDDI Agile Development Center Corporation [再掲]結論 • LangfuseでAIエージェントを見える化しよう (可観測性を高
めよう!) • チームやプロジェクトに応じて適切なLLM Opsツールを選択しよ う! ◦ Langfuseじゃなくても可観測性が担保できればどんなツールでもOK! • AIがどのような情報を受け取って、どんな処理をしているのか? 目的を達成するまでのプロセスやコストを適切に把握する必要が ある。(AIでも人でもこれは一緒) ◦ AIエージェントの開発・運用を持続可能な活動にしよう
Be a Change Leader. アジャイルに力を与え 共に成長し続ける社会を創る AI/MLやアジャイル開発に想いのあるエンジニア、スクラム マスター、デザイナー、プロダクトオーナー(PdM/PjM)を募 集中です! みなさん、ぜひ一緒に働きましょう!!!
採用関連note 採用サイト