Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
LangfuseでAIエージェントの 可観測性を高めよう!/Enhancing AI Agen...
Search
Junya Miyake
April 16, 2025
Technology
1
590
LangfuseでAIエージェントの 可観測性を高めよう!/Enhancing AI Agent Observability with Langfuse!
2025-4-16に開催された ML OpsコミュニティのAI AgentOps LT大会でお話しした内容です。
https://mlops.connpass.com/event/347046/
Junya Miyake
April 16, 2025
Tweet
Share
More Decks by Junya Miyake
See All by Junya Miyake
BEYOND THE RAG🚀 ~とりあえずRAG?を超えていけ! 本当に使えるAIエージェント&生成AIプロダクトを目指して~ / BEYOND-THE-RAG-Toward Practical-GenerativeAI-Products-AOAI-DevDay-2025
jnymyk
4
1.1k
完全に理解した!生成AI自社プロダクトのアジャイル開発の進め方!/ Fully understood! Agile tips for developing our generative AI product!(AOAI Dev Day)
jnymyk
5
2.7k
AzureでRAGをガンガン試行錯誤してみて得たナレッジを紹介します!/Azure RAG knowledge share
jnymyk
25
9.4k
GitHub Actions & オートスケールするSelf-hosted runnerで実現する KAGのみんなのCI/CD
jnymyk
5
1.5k
KDDIのTech blogを爆速レスポンスでつくったよ
jnymyk
3
290
Other Decks in Technology
See All in Technology
「違う現場で格闘する二人」——社内コミュニティがつないだトヨタ流アジャイルの実践とその先
shinichitakeuchi
0
280
チームで安全にClaude Codeを利用するためのプラクティス / team-claude-code-practices
tomoki10
7
3.2k
次世代AIコーディング:OpenAI Codex の最新動向 進行スライド/nikkei-tech-talk-40
nikkei_engineer_recruiting
0
130
AIエージェントを5分で一気におさらい!AIエージェント「構築」元年に備えよう
yakumo
1
150
AIと融ける人間の冒険
pujisi
0
110
Contract One Engineering Unit 紹介資料
sansan33
PRO
0
12k
Node vs Deno vs Bun 〜推しランタイムを見つけよう〜
kamekyame
1
400
Data Hubグループ 紹介資料
sansan33
PRO
0
2.6k
kintone開発のプラットフォームエンジニアの紹介
cybozuinsideout
PRO
0
500
テストセンター受験、オンライン受験、どっちなんだい?
yama3133
0
210
研究開発部メンバーの働き⽅ / Sansan R&D Profile
sansan33
PRO
4
21k
202512_AIoT.pdf
iotcomjpadmin
0
200
Featured
See All Featured
[RailsConf 2023] Rails as a piece of cake
palkan
58
6.2k
Primal Persuasion: How to Engage the Brain for Learning That Lasts
tmiket
0
200
Gemini Prompt Engineering: Practical Techniques for Tangible AI Outcomes
mfonobong
2
250
Testing 201, or: Great Expectations
jmmastey
46
7.9k
Redefining SEO in the New Era of Traffic Generation
szymonslowik
1
190
Chasing Engaging Ingredients in Design
codingconduct
0
97
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
Being A Developer After 40
akosma
91
590k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.8k
Building the Perfect Custom Keyboard
takai
2
670
The Organizational Zoo: Understanding Human Behavior Agility Through Metaphoric Constructive Conversations (based on the works of Arthur Shelley, Ph.D)
kimpetersen
PRO
0
210
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
Transcript
AI AgentOps LT大会!!! LT#6 LangfuseでAIエージェントの 可観測性を高めよう! 2025.04.16 KDDIアジャイル開発センター株式会社(KAG) MJ (三宅
潤也 @jnymyk)
1 KDDI Agile Development Center Corporation 結論 • LangfuseでAIエージェントを見える化しよう (可観測性を高
めよう!) • チームやプロジェクトに応じて適切なLLM Opsツールを選択しよ う! ◦ Langfuseじゃなくても可観測性が担保できればどんなツールでもOK! • AIがどのような情報を受け取って、どんな処理をしているのか? 目的を達成するまでのプロセスやコストを適切に把握する必要が ある。(AIでも人でもこれは一緒) ◦ AIエージェントの開発・運用を持続可能な活動にしよう
2 KDDI Agile Development Center Corporation 自己紹介 • 三宅 潤也
Miyake Junya(@jnymyk) • MJ(えむじぇー)という芸人ネームで最近活動し 始めました!まずはXとSlackから ◦ コミュニティで三宅かぶり(ZENアーキテクツ三宅さん)、今日もトップバッターの @zawakinさんも三宅さん・・・ ◦ 社内でJunya Miyakeの字面かぶり(JunXX MiyaXXまで同じ)による誤爆メンショ ン多数・・・ • KDDIアジャイル開発センター(KAG)のスクラムマスター/エンジニア • チーム開発, クラウド(Azure/AWS), CI/CD, 生成AI/LLMアプリ開発が好 きです New!!!
3 KDDI Agile Development Center Corporation なぜ、AI AgentOpsでObservability ? •
複雑なマルチステップでの失敗要因を特定するため ◦ Traceで各ステップの入力・出力・LLM呼び出しを可視化 ◦ バグ・ハルシネーションを素早く特定
4 KDDI Agile Development Center Corporation なぜ、AI AgentOpsでObservability ? •
精度とコストのトレードオフのバランスを取るため ◦ リアルタイムでコストやレイテンシを見える化 ◦ 高コストな呼び出しを抑制しながら精度を検証
5 KDDI Agile Development Center Corporation AI AgentOpsツールとしてのLangfuseとは? • Langfuseとは?
◦ 生成AI(LLM)アプリケーション向けのOSS監視・ 分析プラットフォーム ◦ Self hosting or Cloudを選択可能。 • 複数人でクローズドな環境で利用するならSelf hosting • Self hostingは構築・継続メンテが大変なので、プラット フォームエンジニアリングチームで共通基盤にできると ベスト
6 KDDI Agile Development Center Corporation AI AgentOpsツールとしてのLangfuseとは? • Langfuseで出来ること
◦ トレース ◦ コスト追跡 ◦ LLMアプリケーションのパフォーマンス監視 ◦ プロンプトの管理 ◦ ユーザーフィードバックの収集と分析
7 KDDI Agile Development Center Corporation デモ • LangGraphで簡易的なQA AIエージェントを実装
• 問い合わせに対して複数のロールのエージェントが対応して目的を達成する までの過程をLangfuseで見える化
8 KDDI Agile Development Center Corporation デモ
9 KDDI Agile Development Center Corporation 実際のプロジェクトとLangfuseのユースケース • 社内問い合わせ業務の生成AIによる業務効率化 ◦
営業・SEからサービス企画部門へのサービス仕様・販売施策・契約手続等 の社内問い合わせ業務で生成AIを活用 ◦ 社内ドキュメントでRAGするAIチャット →正しい検索先を見てるか? →社内ドキュメント更新時のAI回答の継続的な精度評価
10 KDDI Agile Development Center Corporation 実際のプロジェクトとLangfuseのユースケース • 全社員向けの生成AIチャットへのDeep Research機能の組み込み
◦ Web検索, 社内文書を取り込んだベクトルDBへの検索 ◦ 単に検索結果の一部をコンテキストとして渡すのではなく、必 要な情報が揃ってレポートできるまで何度も検索を繰り返す →何回検索を繰り返して回答すると納得感のあるレポートを生成 できるか?を見極め →検索の繰り返し回数 vs コストのバランス
11 KDDI Agile Development Center Corporation [再掲]結論 • LangfuseでAIエージェントを見える化しよう (可観測性を高
めよう!) • チームやプロジェクトに応じて適切なLLM Opsツールを選択しよ う! ◦ Langfuseじゃなくても可観測性が担保できればどんなツールでもOK! • AIがどのような情報を受け取って、どんな処理をしているのか? 目的を達成するまでのプロセスやコストを適切に把握する必要が ある。(AIでも人でもこれは一緒) ◦ AIエージェントの開発・運用を持続可能な活動にしよう
Be a Change Leader. アジャイルに力を与え 共に成長し続ける社会を創る AI/MLやアジャイル開発に想いのあるエンジニア、スクラム マスター、デザイナー、プロダクトオーナー(PdM/PjM)を募 集中です! みなさん、ぜひ一緒に働きましょう!!!
採用関連note 採用サイト