Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Cassandraの活用事例とパフォーマンス特性
Search
Tomohiro Hashidate
June 04, 2019
Technology
3
1.1k
Cassandraの活用事例とパフォーマンス特性
Repro Tech LT発表資料
Tomohiro Hashidate
June 04, 2019
Tweet
Share
More Decks by Tomohiro Hashidate
See All by Tomohiro Hashidate
本番のトラフィック量でHudiを検証して見えてきた課題
joker1007
2
570
5分で分かった気になるDebezium
joker1007
1
39
Rustで作るtree-sitterパーサーのRubyバインディング
joker1007
5
820
tree-sitter-rbsで作って学ぶRBSとパーサージェネレーター
joker1007
3
200
Kafka Streamsで作る10万rpsを支えるイベント駆動マイクロサービス
joker1007
7
3.2k
neovimで作る最新Ruby開発環境2023
joker1007
2
3.8k
ReproのImport/Exportを支えるサーバーレスアーキテクチャ
joker1007
1
1.2k
Ruby on Rails on Lambda
joker1007
13
12k
Sidekiq to Kafka ストリームベースのmicro services
joker1007
4
8.8k
Other Decks in Technology
See All in Technology
Introduction to Works of ML Engineer in LY Corporation
lycorp_recruit_jp
0
140
OCI Security サービス 概要
oracle4engineer
PRO
0
6.5k
第1回 国土交通省 データコンペ参加者向け勉強会③- Snowflake x estie編 -
estie
0
130
オープンソースAIとは何か? --「オープンソースAIの定義 v1.0」詳細解説
shujisado
9
1.1k
TypeScriptの次なる大進化なるか!? 条件型を返り値とする関数の型推論
uhyo
2
1.7k
プロダクト活用度で見えた真実 ホリゾンタルSaaSでの顧客解像度の高め方
tadaken3
0
180
[CV勉強会@関東 ECCV2024 読み会] オンラインマッピング x トラッキング MapTracker: Tracking with Strided Memory Fusion for Consistent Vector HD Mapping (Chen+, ECCV24)
abemii
0
220
OCI Vault 概要
oracle4engineer
PRO
0
9.7k
【令和最新版】AWS Direct Connectと愉快なGWたちのおさらい
minorun365
PRO
5
760
マルチモーダル / AI Agent / LLMOps 3つの技術トレンドで理解するLLMの今後の展望
hirosatogamo
37
12k
エンジニア人生の拡張性を高める 「探索型キャリア設計」の提案
tenshoku_draft
1
130
データプロダクトの定義からはじめる、データコントラクト駆動なデータ基盤
chanyou0311
2
330
Featured
See All Featured
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
93
16k
Visualization
eitanlees
145
15k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
364
24k
Git: the NoSQL Database
bkeepers
PRO
427
64k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
226
22k
No one is an island. Learnings from fostering a developers community.
thoeni
19
3k
4 Signs Your Business is Dying
shpigford
180
21k
Speed Design
sergeychernyshev
25
620
10 Git Anti Patterns You Should be Aware of
lemiorhan
655
59k
Fantastic passwords and where to find them - at NoRuKo
philnash
50
2.9k
Optimizing for Happiness
mojombo
376
70k
Optimising Largest Contentful Paint
csswizardry
33
2.9k
Transcript
Cassandra の活⽤事例とパフォーマンス特性 joker1007 (Repro inc. CTO)
self.inspect @joker1007 Ruby/Rails/fluentd/presto/infra ⼤体アーキテクト業 今はkafka とkudu に興味がある
話すこと Repro でのCassandra の活⽤⽬的 Cassandra の選定理由 Cassandra のパフォーマンス特性と設計時の注意 話さないこと 運⽤時の細かな注意点
何のために 端末情報記録 ユーザープロフィール情報 イベント実⾏回数 / user リアルタイムで更新される情報の保持がメイン
何故Cassandra を選択したか 書き込み回数が⾮常に多い かつ読み込み時に100 万件単位で取得しJOIN する必要がある 組み合わせる対象として、数⼗⽇分の⾏動ログを含む。 書き込みがスケールし、当時からセグメンテーションに利⽤していたpresto と連携が 可能で、読み込みもある程度分散できるデータストアが必要。
→ Cassandra を採⽤。
Cassandra のパフォーマンス特性
書き込みの概要 Client Client R2 R2 R3 R3 1 1 2
3 4 4 5 6 7 8 9 10 11 12 R1 R1 Write response Chosen node Coordinator node https://docs.datastax.com/ja/cassandra- jajp/3.0/cassandra/dml/dmlClientRequestsWrite.html
書き込みの概要 https://docs.datastax.com/ja/cassandra- jajp/3.0/cassandra/dml/dmlHowDataWritten.html
書き込みパフォーマンス特性 パーティション対象の決定とmemtable 、transaction log が書ければOK 。 最終的なテーブルファイルは不変なので、書き出しがシンプル。 パーティションさえ均等なら割と簡単にスケールする ⼀件単位の書き込みは、ほぼ100 マイクロ秒以下
現時点で20000/sec ぐらいの書き込みがある 整合性を保ってカウントアップする処理は重い 複数ノードを跨いでCAS やロックが必要になる
読み込みの概要 Client Client R2 R2 R3 R3 1 1 2
3 4 4 5 6 7 8 9 10 11 12 R1 R1 replica node failed coodinator node resends after timeout Chosen node Coordinator node https://docs.datastax.com/ja/cassandra- jajp/3.0/cassandra/dml/dmlClientRequestsRead.html
読み込みの概要 https://docs.datastax.com/ja/cassandra-jajp/3.0/cassandra/dml/dmlAboutReads.html
読み込みパフォーマンス特性 ⼀件単位の読み込みに向いている 多くのデータをまとめて取得するには不向き 取得対象のパーティションとノード特定にCPU を使う クラスタのノード間でデータの通信が多く発⽣する パーティション毎のdigest 要求 read repair
presto での利⽤は本来は不向き パーティション数とノード数でバランスを取ることで 何とか⽬的のパフォーマンスを維持
テーブル設計の重要性 読み込みワークロードに合わせてテーブルを設計する、でないとまともにパフォ ーマンスが出ない。 ユースケース毎にテーブルがあり、データの重複は覚悟する。 とにかくパーティションキー以外を条件にクエリしないこと。
まとめ 読み込みパターンに合わせたテーブル設計をすること ⽤途が適切ならかなりのパフォーマンスが出せる パーティション数とデータの分散度合いのコントロールが重要
その他のTips CPU 、ディスクI/O 、ネットワークそれぞれかなり影響があるのでメトリックをち ゃんと取得しておくこと ホットデータはオンメモリで読み書きするのでメモリは多く セカンダリインデックスは基本使えない