Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
⚡Lightdashを試してみた
Search
k_data_analyst
May 17, 2022
Technology
1
1.1k
⚡Lightdashを試してみた
k_data_analyst
May 17, 2022
Tweet
Share
More Decks by k_data_analyst
See All by k_data_analyst
dbt v1.8で追加された単体テストを触ってみた
k_data_analyst
2
530
"あえて"データ整備人になるメリットを前向きに考えてみた
k_data_analyst
0
110
Other Decks in Technology
See All in Technology
DynamoDB でスロットリングが発生したとき_大盛りver/when_throttling_occurs_in_dynamodb_long
emiki
1
410
TypeScript、上達の瞬間
sadnessojisan
46
13k
Making your applications cross-environment - OSCG 2024 NA
salaboy
0
190
OTelCol_TailSampling_and_SpanMetrics
gumamon
1
180
Lambda10周年!Lambdaは何をもたらしたか
smt7174
2
110
iOSチームとAndroidチームでブランチ運用が違ったので整理してます
sansantech
PRO
0
140
強いチームと開発生産性
onk
PRO
35
11k
プロダクト活用度で見えた真実 ホリゾンタルSaaSでの顧客解像度の高め方
tadaken3
0
130
Adopting Jetpack Compose in Your Existing Project - GDG DevFest Bangkok 2024
akexorcist
0
110
OS 標準のデザインシステムを超えて - より柔軟な Flutter テーマ管理 | FlutterKaigi 2024
ronnnnn
0
160
ExaDB-D dbaascli で出来ること
oracle4engineer
PRO
0
3.9k
10XにおけるData Contractの導入について: Data Contract事例共有会
10xinc
6
650
Featured
See All Featured
Designing for Performance
lara
604
68k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
6
410
Typedesign – Prime Four
hannesfritz
40
2.4k
A designer walks into a library…
pauljervisheath
204
24k
Art, The Web, and Tiny UX
lynnandtonic
297
20k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
364
24k
Happy Clients
brianwarren
98
6.7k
Mobile First: as difficult as doing things right
swwweet
222
8.9k
How to train your dragon (web standard)
notwaldorf
88
5.7k
GraphQLとの向き合い方2022年版
quramy
43
13k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.3k
Rebuilding a faster, lazier Slack
samanthasiow
79
8.7k
Transcript
⚡Lightdashを試してみた
自己紹介 株式会社オープンエイト CS企画部 データ戦略グループ 香村 貴之 / Komura Takayuki ・データ基盤の開発・保守
・Salesforceのシステム管理者 @k_data_engineer
アジェンダ 1. Lightdashとは? 2. 実行環境の準備 3. できること/できないこと
・所謂BIツールに属するサービス ・有名どころだとUI/UXがLookerに似ている ・OSS(無償)とCloud(有償)で提供されている ・dbtのプロジェクトをベースに、抽出する デー タ(カラム)を選択できる Lightdashとは? 特徴
・data build toolの略称 ・ELT処理のTをSELECT文で実装できる ・OSS(無償)とCloud(一部有償)で提供されている ・yml形式でunique/not nullといったテストの実装 や、descriptionの定義ができる ・データリネージを自動で生成してくれる 特徴
dbtとは?
実行環境の準備 Google Compute Engine (Container-Optimized OS) Google Compute EngineのContainer-Optimized OSインスタンスを起動します。
Dockerイメージをもとにdbtを起動します。
実行環境の準備 Google Compute Engine (Container-Optimized OS) $ dbt init のコマンドでdbtのプロジェクトを作成します。
加工前サンプル用データを BigQueryに用意しておき、dbtで加工処理を実装した上で $ dbt run のコマンドで加工後のテーブルを BigQueryに作成します。
実行環境の準備 Google Compute Engine (Container-Optimized OS) Githubリポジトリに、dbtプロジェクトのコードを pushします。
実行環境の準備 Google Compute Engine (Container-Optimized OS) DockerイメージをもとにLightdashを起動します。 接続先をGithubリポジトリにして、dbtプロジェクトのコードを Lightdashから参照できるようにします。
実行環境の準備 Google Compute Engine (Container-Optimized OS) これでLightdashからBigQueryにSQLを投げ、データ抽出及び可視化ができるようになります。
サンプルデータの説明 データセット pokemon_mart pokemon_warehouse テーブル pokemons (ポケモンの基本データ ) types (ポケモンのタイプデータ
) pokemon_details (ポケモンの詳細データ )
できること/できないこと Explore>Tables:データ抽出、グラフ化を行うページ
Explore>Tables:データ抽出、グラフ化を行うページ できること/できないこと version: 2 models: - name: pokemon_details description: ‘ポケモンの詳細データ
’ meta: label: ‘DM:ポケモン詳細データ ’ config: tags: [‘data_mart’] 通常はnameフィールドの文字列が表示されるが、 meta フィールドを追加することで、テーブルの表示名を制御で きます。 pokemon_details.yml
Explore>Tables:データ抽出、グラフ化を行うページ できること/できないこと version: 2 models: - name: pokemon_details description: ‘ポケモンの詳細データ
’ meta: label: ‘DM:ポケモン詳細データ ’ config: tags: [‘data_mart’] 接続先を設定する際にタグを指定すると、そのタグがつ けられたテーブル(モデル)のみを表示させることができ ます。 pokemon_details.yml
できること/できないこと Lightdash Project Project Project ・tagA ・tagC ・tagB
・tagC 全てのテーブルが表示される tagA,tagCが設定されたテーブルが表示される tagB,tagCが設定されたテーブルが表示される 接続先 タグ
Explore>Tables:データ抽出、グラフ化を行うページ できること/できないこと pokemon_details.yml columns: - name: pokemon_id meta: dimension:
label: ‘図鑑ナンバー’ metrics: count_pokemon_id: label: ‘(CountDis)図鑑ナンバー’ type: count_distinct - name: pokemon_name metaフィールドを追加し、その中で dimensionやmetrics を定義すると、Lightdash上で選択できるようになりま す。
Explore>Tables:データ抽出、グラフ化を行うページ できること/できないこと
Explore>Tables:データ抽出、グラフ化を行うページ できること/できないこと 選べるグラフは ・縦棒グラフ ・横棒グラフ ・折れ線グラフ ・散布図 ・テーブル形式 ・単一数値 の6種類
ファネルグラフや円グラフを作ることはできません。 また、一部のdimensionをpivotさせてピボットテーブルを作 ることもできません。 (クロス分析ができないのが残念ポイン ト)
Explore>Tables:データ抽出、グラフ化を行うページ できること/できないこと
Explore>Tables:データ抽出、グラフ化を行うページ できること/できないこと フィルターの組み合わせは ・All(全てand条件) ・Any(全てor条件) のどちらかしか選べないため、 A and B and
(C or D) といった条件を表現できません。 また、複数のdimensionを組み合わせたり、関数を使ったカ スタムフィルター的なものを作ることもできません。
Browse>Dashboards:保存したグラフを並べてダッシュボードを作るページ できること/できないこと
Browse>Dashboards:保存したグラフを並べてダッシュボードを作るページ できること/できないこと グラフ単位でフィルターをかけることができません。 例えば、DM:ポケモン詳細データ タイプ1というフィルターを 追加し、条件にでんきを入力したとします。 この際裏側では、DM:ポケモン詳細データ テーブルから生 成された全てのグラフに対して、 WHERE
タイプ1 = ‘でんき’ という条件が付与されます。
Browse>Dashboards:保存したグラフを並べてダッシュボードを作るページ できること/できないこと また、フィルターは全て and条件で処理されます。 例えば、DM:ポケモン詳細データ タイプ1とDM:ポケモン詳 細データ タイプ2をフィルターに追加し、それぞれの条件に でんきを入力したとします。 この場合、
WHERE タイプ1 = ‘でんき’ AND タイプ2 = ‘でんき’ という条件が、DM:ポケモン詳細データ テーブルから作られ た全てのグラフに付与されます。
まとめ ・dbtのプロジェクトを整備しておくことで、GUIベースでデータ 抽出・可 視化できる状態を作れるのが便利! ・簡単な集計はLightdash、複雑な集計はcsvで落としてExcelで 集計 と割り切るのはありかも? ・今後のアップデートに期待が高まる💪