Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
「深層学習による自然言語処理」読書会 第5章5.1
Search
Kei Shiratsuchi
PRO
September 08, 2017
Technology
0
470
「深層学習による自然言語処理」読書会 第5章5.1
「深層学習による自然言語処理」読書会
第5章5.1
Kei Shiratsuchi
PRO
September 08, 2017
Tweet
Share
More Decks by Kei Shiratsuchi
See All by Kei Shiratsuchi
モノリスとマイクロサービスの橋渡し - ベターからモアベターへ
kei_s
PRO
0
110
なぜ リアーキテクティング専任チームを作ったのか
kei_s
PRO
2
1.5k
実践 Rails アソシエーションリファクタリング / Rails association refactoring in practice
kei_s
PRO
8
9.1k
「Go言語でつくるインタプリタ」を Rust で移植してみた / "Write An Interpreter In Go" In Rust
kei_s
PRO
1
2k
Rust言語で作るインタプリタ / Write An Interpreter In Rust
kei_s
PRO
2
720
育児休業のご報告と、育児グッズとしてのスマートスピーカー / Parental Leave and SmartSpeaker
kei_s
PRO
0
870
「深層学習による自然言語処理」読書会 第6章2.7
kei_s
PRO
0
460
最近個人的に気になるプログラミング言語おさらい Ruby, Python, Go, Rust, Julia
kei_s
PRO
0
1.1k
「深層学習による自然言語処理」読書会 第2章2.1~2.5
kei_s
PRO
0
470
Other Decks in Technology
See All in Technology
ビズリーチ求職者検索におけるPLMとLLMの活用 / Search Engineering MEET UP_2-1
visional_engineering_and_design
1
170
「使い方教えて」「事例教えて」じゃもう遅い! Microsoft 365 Copilot を触り倒そう!
taichinakamura
0
450
「改善」ってこれでいいんだっけ?
ukigmo_hiro
0
360
GoでもGUIアプリを作りたい!
kworkdev
PRO
0
150
SCONE - 動画配信の帯域を最適化する新プロトコル
kazuho
0
100
組織改革から開発効率向上まで! - 成功事例から見えたAI活用のポイント - / 20251016 Tetsuharu Kokaki
shift_evolve
PRO
1
160
Contract One Engineering Unit 紹介資料
sansan33
PRO
0
8.9k
OpenTelemetry が拡げる Gemini CLI の可観測性
phaya72
2
420
やる気のない自分との向き合い方/How to Deal with Your Unmotivated Self
sanogemaru
1
520
Sansan Engineering Unit 紹介資料
sansan33
PRO
1
3k
大規模サーバーレスAPIの堅牢性・信頼性設計 〜AWSのベストプラクティスから始まる現実的制約との向き合い方〜
maimyyym
10
5k
Introduction to Bill One Development Engineer
sansan33
PRO
0
300
Featured
See All Featured
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
15k
GraphQLとの向き合い方2022年版
quramy
49
14k
Gamification - CAS2011
davidbonilla
81
5.5k
The Art of Programming - Codeland 2020
erikaheidi
56
14k
Context Engineering - Making Every Token Count
addyosmani
7
270
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.7k
The Power of CSS Pseudo Elements
geoffreycrofte
79
6k
Designing for Performance
lara
610
69k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.6k
Become a Pro
speakerdeck
PRO
29
5.6k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Transcript
ʮਂֶशʹΑΔࣗવݴޠॲ ཧʯಡॻձ ୈষ ⽩⼟ 慧 株式会社レトリバ © 2017 Retrieva, Inc.
ࣗݾհ • 名前:⽩⼟ 慧 • 年齢:33歳 • 所属:株式会社レトリバ(2016年4⽉〜) • 職業:エンジニア
• ⾃然⾔語処理:⼤学の授業レベル。 • 深層学習:⼊社してから少しだけ案件で。 © 2017 Retrieva, Inc. 2
<એ> • WEB+DB PRESS Vol.100 に、弊社 のメンバーが特集記事を書きまし た。 • 特集1
作って学ぶ⼈⼯知能 • 第1章 ⼈⼯知能とはどんな技術なの か? • 第2章 ⾃然⾔語処理 • 第3章 機械学習 • 第4章 深層学習とニューラルネット ワーク • 明⽇ 8/24 発売! © 2017 Retrieva, Inc. 3
ൣғ • 5.1. 機械翻訳 • 5.1.1 「統計」翻訳と「ニューラル」翻訳 • 5.1.2 典型的なモデル構成
• 5.1.3 ⼊出⼒の処理単位/未知語に対する改良 • 5.1.4 被覆に対する改良 • 5.1.5 今後の発展 • 付録: GitHub に公開された Chainer による NMT の実装 © 2017 Retrieva, Inc. 4
ʮ౷ܭʯ༁ͱʮχϡʔϥϧʯ༁ • ニューラル翻訳(NMT) • 系列変換モデルのように、1つのニューラルネットで翻訳モデルを構成 するような機械翻訳⽅式 • 統計翻訳(SMT)との対⽐として使われる⽤語。最近では系列変換モデ ルを使った機械翻訳の総称として使われるようになった •
WMT15,16でニューラル翻訳システムが統計翻訳システムを⼤ きく上回った • この章では、2017年1⽉時点でのベースライン技術に絞って解 説 © 2017 Retrieva, Inc. 5
యܕతͳϞσϧߏ • 注意機構付き系列変換モデルが、ニューラル翻訳を含めた機械翻訳 のベースラインと考えられるようになってきた • GroungHog(RNNSearch) • 現在メンテナンスは終了 • GroungHog
は⼆種類あるが、RNNSearch は注意機構付き • OpenNMT • 現時点で速度、メモリ使⽤量、最終的な翻訳精度で優れていると⾔われる • 本節ではOpenNMTで採⽤されているモデルを解説する © 2017 Retrieva, Inc. 6
యܕతͳϞσϧߏ • 符号化部分 • 2層双⽅向LSTM • 復号化部分 • 2層LSTM •
注意機構 © 2017 Retrieva, Inc. 7
యܕతͳϞσϧߏʢූ߸Խ෦ʣ © 2017 Retrieva, Inc. 8
యܕతͳϞσϧߏʢ෮߸Խ෦ɺֶश࣌ʣ © 2017 Retrieva, Inc. 9
యܕతͳϞσϧߏʢ෮߸Խ෦ɺධՁ࣌ʣ • 正解がわからないので、前 の時刻 j-1 の予測を利⽤し て j の予測を⾏う •
EOSが出⼒されるまで繰り 返す • ビーム探索を⽤いて処理を ⾏うことが多い © 2017 Retrieva, Inc. 10
ೖग़ྗͷॲཧ୯Ґະޠʹର͢Δվྑ • 扱う語彙数を多くすると計算量が⼤きくなりすぎ、精度も低下 する • ニューラル翻訳では統計翻訳より語彙数が少ないのが現状 • 未知語をどう扱うかも課題 • 統計翻訳を踏襲して、未知語を後処理で何かの語に置き換える⼿法も
ある © 2017 Retrieva, Inc. 11
ೖग़ྗͷॲཧ୯Ґະޠʹର͢Δվྑ • 「単語」ではなく「⽂字」を単位にする⽅法 • ⽂字数は多くても数1000⽂字で収まるので、簡単になる • ⼀⽅、系列⻑は圧倒的に⻑くなるので、予測誤りが多くなる • トレードオフの⾒極めはまだ •
バイト対符号化 • 前処理として、⼀定の語彙数になるまで、出現頻度が⼤きい⽂字ペア を1つの⽂字としてまとめていく © 2017 Retrieva, Inc. 12
ඃ෴ʹؔ͢Δվྑ • ニューラル翻訳の既知の弱点 • 繰り返し⽣成する、過剰⽣成問題(Over-generation) • 必要な語やフレーズを無視する、不⾜⽣成問題(Under-generation) • 被覆(Coverage)概念を導⼊する •
統計翻訳時代には普通に使われていた • 注意機構で計算される注意確率の合計が、復号化器の処理が終わった 際に何らかの値(全て1のベクトルなど)になるよう学習させる © 2017 Retrieva, Inc. 13
ࠓޙͷൃల オレはようやく登りはじめたばかりだからな。 このはてしなく遠いNMT坂をよ… © 2017 Retrieva, Inc. 14
(JU)VCʹެ։͞Εͨ $IBJOFS ʹΑΔ /.5 ͷ࣮ • https://github.com/mlpnlp/mlpnlp-nmt © 2017 Retrieva,
Inc. 15