Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[RSJ22] TDP-MAT: Multimodal Language Comprehens...
Search
Semantic Machine Intelligence Lab., Keio Univ.
PRO
September 05, 2022
Technology
0
830
[RSJ22] TDP-MAT: Multimodal Language Comprehension for Object Manipulation Tasks via Real Images
Semantic Machine Intelligence Lab., Keio Univ.
PRO
September 05, 2022
Tweet
Share
More Decks by Semantic Machine Intelligence Lab., Keio Univ.
See All by Semantic Machine Intelligence Lab., Keio Univ.
FlowAR: Scale-wise Autoregressive Image Generation Meets Flow Matching
keio_smilab
PRO
0
7
[Journal club] VLA-Adapter: An Effective Paradigm for Tiny-Scale Vision-Language-Action Model
keio_smilab
PRO
0
71
[Journal club] Improved Mean Flows: On the Challenges of Fastforward Generative Models
keio_smilab
PRO
0
140
[Journal club] MemER: Scaling Up Memory for Robot Control via Experience Retrieval
keio_smilab
PRO
0
89
[Journal club] Flow Matching for Generative Modeling
keio_smilab
PRO
1
340
Multimodal AI Driving Solutions to Societal Challenges
keio_smilab
PRO
2
210
[Journal club] Re-thinking Temporal Search for Long-Form Video Understanding
keio_smilab
PRO
0
48
[Journal club] Focusing on What Matters: Object-Agent-centric Tokenization for Vision Language Action Models
keio_smilab
PRO
0
22
[Journal club] EXPERT: An Explainable Image Captioning Evaluation Metric with Structured Explanations
keio_smilab
PRO
0
75
Other Decks in Technology
See All in Technology
[CV勉強会@関東 World Model 読み会] Orbis: Overcoming Challenges of Long-Horizon Prediction in Driving World Models (Mousakhan+, NeurIPS 2025)
abemii
0
150
Codex 5.3 と Opus 4.6 にコーポレートサイトを作らせてみた / Codex 5.3 vs Opus 4.6
ama_ch
0
210
フルカイテン株式会社 エンジニア向け採用資料
fullkaiten
0
10k
Greatest Disaster Hits in Web Performance
guaca
0
290
Bill One急成長の舞台裏 開発組織が直面した失敗と教訓
sansantech
PRO
2
400
外部キー制約の知っておいて欲しいこと - RDBMSを正しく使うために必要なこと / FOREIGN KEY Night
soudai
PRO
12
5.6k
~Everything as Codeを諦めない~ 後からCDK
mu7889yoon
3
510
Claude_CodeでSEOを最適化する_AI_Ops_Community_Vol.2__マーケティングx_AIはここまで進化した.pdf
riku_423
2
610
22nd ACRi Webinar - NTT Kawahara-san's slide
nao_sumikawa
0
100
ファインディの横断SREがTakumi byGMOと取り組む、セキュリティと開発スピードの両立
rvirus0817
1
1.7k
AIと新時代を切り拓く。これからのSREとメルカリIBISの挑戦
0gm
2
3.2k
GitHub Issue Templates + Coding Agentで簡単みんなでIaC/Easy IaC for Everyone with GitHub Issue Templates + Coding Agent
aeonpeople
1
260
Featured
See All Featured
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.3k
The Organizational Zoo: Understanding Human Behavior Agility Through Metaphoric Constructive Conversations (based on the works of Arthur Shelley, Ph.D)
kimpetersen
PRO
0
240
Efficient Content Optimization with Google Search Console & Apps Script
katarinadahlin
PRO
1
330
GraphQLとの向き合い方2022年版
quramy
50
14k
The B2B funnel & how to create a winning content strategy
katarinadahlin
PRO
1
280
Skip the Path - Find Your Career Trail
mkilby
0
59
My Coaching Mixtape
mlcsv
0
50
Facilitating Awesome Meetings
lara
57
6.8k
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1.1k
What does AI have to do with Human Rights?
axbom
PRO
0
2k
Large-scale JavaScript Application Architecture
addyosmani
515
110k
GitHub's CSS Performance
jonrohan
1032
470k
Transcript
1
2
3 ✓ https://www.toyota.com/usa/toyota-effect/romy-robot
✓ : 4 “Look in the left wicker vase that
is next to the potted plant” Wicker vase :
✓ : “Look in the left wicker vase that is
next to the potted plant” 5 Wicker vase : Wicker vase Wicker vase Wicker vase
✓ : ✓ Key : “Look in the left wicker
vase that is next to the potted plant” 6 Wicker vase : Wicker vase Wicker vase Wicker vase
✓ REVERIE-fetch • 7 “Look in the left wicker vase
that is next to the potted plant”
✓ REVERIE-fetch • • (Instruction) (Context Regions) (Candidate Region) 8
“Look in the left wicker vase that is next to the potted plant”
✓ REVERIE-fetch • • (Instruction) (Context Regions) (Candidate Region) 9
“Look in the left wicker vase that is next to the potted plant”
✓ REVERIE-fetch • • (Instruction) (Context Regions) (Candidate Region) •
10 “Look in the left wicker vase that is next to the potted plant”
✓ REVERIE-fetch • • (Instruction) (Context Regions) (Candidate Region) •
11 “Look in the left wicker vase that is next to the potted plant” Faster R-CNN[Ren+, PAMI16]
MTCM [Magassouba+, RA-L19] . VGG16LSTM . Target-dependent UNITER (TDU) [Ishikawa+,
RA-L21] UNITER[Chen+, ECCV20] . REVERIE task / dataset [Qi+, CVPR20] , REVERIE 12
• MAT[Ishikawa+, ICPR22] • CLIP[Radford+, ICML21] • Perceiver[Jaegle+, ICML21] 13
• MAT[Ishikawa+, ICPR22] • CLIP[Radford+, ICML21] • Perceiver[Jaegle+, ICML21] 14
• MAT[Ishikawa+, ICPR22] • CLIP[Radford+, ICML21] • Perceiver[Jaegle+, ICML21] 15
• MAT[Ishikawa+, ICPR22] • CLIP[Radford+, ICML21] • Perceiver[Jaegle+, ICML21] 16
• MAT[Ishikawa+, ICPR22] • CLIP[Radford+, ICML21] • Perceiver[Jaegle+, ICML21] 17
2 1 3
✓ 𝜹𝑡 ✓ 18 Input 𝜹𝑡 Output 1. 𝐸 𝜹
= CE 𝑓 𝒙 , 𝒚 ∇𝜹 𝐸 𝜹 = 𝜕𝐸 𝜕𝜹 2. ∇𝜹 𝐸 𝜹 𝒎𝑡 𝒗𝑡 𝒎𝑡 = 𝜌1 𝒎𝑡−1 + 1 − 𝜌1 ∇𝜹 𝐸 𝜹𝑡 𝒗𝑡 = 𝜌2 𝒗𝑡−1 + 1 − 𝜌2 ∇𝜹 𝐸 𝜹𝑡 2 3. 𝒎𝑡 𝒗𝑡 ∆𝜹𝒕 ෝ 𝒎𝑡 = 𝒎𝑡 1 − 𝜌1 𝑡 , ෝ 𝒗𝑡 = 𝒗𝑡 1 − 𝜌2 𝑡 ∆𝜹𝒕 = 𝜂 ෝ 𝒎𝑡 ෝ 𝒗𝑡 + 𝜖 4. 𝜹𝑡+1 = Π 𝜹 ≤𝜖 𝜹𝑡 + ∆𝜹𝒕 ∆𝜹𝒕 𝐹
✓ CLIP ✓ ViT[Dosovitskiy+, ICLR21] ✓ transformer [EOT] 19 [EOT]
✓ ✓ Perceiver CLIP 20 CLIP Encoders
✓ CLIP Encoders , Perceiver 21
✓ REVERIE-fetch dataset - REVERIE dataset ✓ REVERIE[Qi+, CVPR18] -
→ 1. , 2. https://yuankaiqi.github.io/REVERIE_Challenge/static/img/demo.gif 22 Matterport3D
✓ REVERIE-fetch dataset - REVERIE dataset ✓ REVERIE[Qi+, CVPR18] :
+ 23 , ↓ - REVERIE - - https://yuankaiqi.github.io/REVERIE_Challenge/static/img/demo.gif
✓ REVERIE-fetch dataset • REVERIE dataset #Samples Vocabulary size Average
sentence length 30532 2853 19.1 Training Validation Test 26808 2552 1172 24 “Look in the left wicker vase that is next to the potted plant”
“Go into the living room and give me the pillow
on the couch nearest the plant” 25 • → TDP-MAT
26 • → TDP-MAT ✓ Bounding box “Make haste to
the office and fluff the pillow sitting on the left of the chair”
• Acc [%] : 27 Condition Acc [%] ↑ Baseline
: TDU [Ishikawa+, IROS21] 73.3 0.485 Ours : TDP-MAT W/o MAT 72.5 3.55 W/o MAT + Smaller learning rate 74.4 0.831 W/o CLIP & Perceiver 74.1 1.47 W/o Pretraining 73.1 2.24 Full 75.3 0.691 +2.0
28 Condition Acc [%] ↑ Baseline : TDU [Ishikawa+, IROS21]
73.3 0.485 Ours : TDP-MAT W/o MAT 72.5 3.55 W/o MAT + Smaller learning rate 74.4 0.831 W/o CLIP & Perceiver 74.1 1.47 W/o Pretraining 73.1 2.24 Full 75.3 0.691 +2.8 - - 5 - ( ) - Smaller learning rate : 1/8 -
29 Condition Acc [%] ↑ Baseline : TDU [Ishikawa+, IROS21]
73.3 0.485 Ours : TDP-MAT W/o MAT 72.5 3.55 W/o MAT + Smaller learning rate 74.4 0.831 W/o CLIP & Perceiver 74.1 1.47 W/o Pretraining 73.1 2.24 Full 75.3 0.691 +1.2 - CLIP Encoders, Perceiver Module, - Cross Attention
30 Condition Acc [%] ↑ Baseline : TDU [Ishikawa+, IROS21]
73.3 0.485 Ours : TDP-MAT W/o MAT 72.5 3.55 W/o MAT + Smaller learning rate 74.4 0.831 W/o CLIP & Perceiver 74.1 1.47 W/o Pretraining 73.1 2.24 Full 75.3 0.691 +2.2 - TDU
✓ • ✓ • MAT • ✓ • 31
✓ ✓ 𝐿 𝑁 𝑅𝐿×𝐷 𝑅𝑁×𝐸 𝑅𝐿×𝐷, 𝑅𝑁×𝐷 → 𝑅𝐿×𝑁
𝑅𝐿×𝐷 𝑅𝐿×𝐷, 𝑅𝐿×𝐷 → 𝑅𝐿×𝐿 32
✓ ✓ ✓ ✓ 33
✓ 34 8 × 10−4 𝛽1 = 0.9, 𝛽2 =
0.99
✓ ✓ ✓ 35 19+6=25