Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[RSJ22] TDP-MAT: Multimodal Language Comprehens...
Search
Semantic Machine Intelligence Lab., Keio Univ.
PRO
September 05, 2022
Technology
0
830
[RSJ22] TDP-MAT: Multimodal Language Comprehension for Object Manipulation Tasks via Real Images
Semantic Machine Intelligence Lab., Keio Univ.
PRO
September 05, 2022
Tweet
Share
More Decks by Semantic Machine Intelligence Lab., Keio Univ.
See All by Semantic Machine Intelligence Lab., Keio Univ.
Multimodal AI Driving Solutions to Societal Challenges
keio_smilab
PRO
1
140
[Journal club] Re-thinking Temporal Search for Long-Form Video Understanding
keio_smilab
PRO
0
28
[Journal club] EXPERT: An Explainable Image Captioning Evaluation Metric with Structured Explanations
keio_smilab
PRO
0
62
[Journal club] FreeTimeGS: Free Gaussian Primitives at Anytime and Anywhere for Dynamic Scene Reconstruction
keio_smilab
PRO
0
86
[Journal club] Thinking in Space: How Multimodal Large Language Models See, Remember, and Recall Spaces
keio_smilab
PRO
0
130
[Journal club] GraphEQA: Using 3D Semantic Scene Graphs for Real-time Embodied Question Answering
keio_smilab
PRO
0
81
[RSJ25] Feasible RAG: Hierarchical Multimodal Retrieval with Feasibility-Aware Embodied Memory for Mobile Manipulation
keio_smilab
PRO
0
180
[RSJ25] LILAC: Language‑Conditioned Object‑Centric Optical Flow for Open‑Loop Trajectory Generation
keio_smilab
PRO
0
140
[RSJ25] Multilingual Scene Text-Aware Multimodal Retrieval for Everyday Objects Based on Deep State Space Models
keio_smilab
PRO
0
110
Other Decks in Technology
See All in Technology
ML PM Talk #1 - ML PMの分類に関する考察
lycorptech_jp
PRO
1
710
Microsoft Agent 365 を 30 分でなんとなく理解する
skmkzyk
1
1k
Overture Maps Foundationの3年を振り返る
moritoru
0
160
Uncertainty in the LLM era - Science, more than scale
gaelvaroquaux
0
800
GitLab Duo Agent Platformで実現する“AI駆動・継続的サービス開発”と最新情報のアップデート
jeffi7
0
210
RAG/Agent開発のアップデートまとめ
taka0709
0
140
今からでも間に合う!速習Devin入門とその活用方法
ismk
1
430
Reinforcement Fine-tuning 基礎〜実践まで
ch6noota
0
140
re:Invent2025 コンテナ系アップデート振り返り(+CloudWatchログのアップデート紹介)
masukawa
0
310
生成AIでテスト設計はどこまでできる? 「テスト粒度」を操るテーラリング術
shota_kusaba
0
450
GitHub Copilotを使いこなす 実例に学ぶAIコーディング活用術
74th
3
1.4k
Karate+Database RiderによるAPI自動テスト導入工数をCline+GitLab MCPを使って2割削減を目指す! / 20251206 Kazuki Takahashi
shift_evolve
PRO
1
470
Featured
See All Featured
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.2k
Docker and Python
trallard
47
3.7k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
35
2.3k
Code Review Best Practice
trishagee
74
19k
Bootstrapping a Software Product
garrettdimon
PRO
307
120k
How to Ace a Technical Interview
jacobian
280
24k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
Optimising Largest Contentful Paint
csswizardry
37
3.5k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
It's Worth the Effort
3n
187
29k
Transcript
1
2
3 ✓ https://www.toyota.com/usa/toyota-effect/romy-robot
✓ : 4 “Look in the left wicker vase that
is next to the potted plant” Wicker vase :
✓ : “Look in the left wicker vase that is
next to the potted plant” 5 Wicker vase : Wicker vase Wicker vase Wicker vase
✓ : ✓ Key : “Look in the left wicker
vase that is next to the potted plant” 6 Wicker vase : Wicker vase Wicker vase Wicker vase
✓ REVERIE-fetch • 7 “Look in the left wicker vase
that is next to the potted plant”
✓ REVERIE-fetch • • (Instruction) (Context Regions) (Candidate Region) 8
“Look in the left wicker vase that is next to the potted plant”
✓ REVERIE-fetch • • (Instruction) (Context Regions) (Candidate Region) 9
“Look in the left wicker vase that is next to the potted plant”
✓ REVERIE-fetch • • (Instruction) (Context Regions) (Candidate Region) •
10 “Look in the left wicker vase that is next to the potted plant”
✓ REVERIE-fetch • • (Instruction) (Context Regions) (Candidate Region) •
11 “Look in the left wicker vase that is next to the potted plant” Faster R-CNN[Ren+, PAMI16]
MTCM [Magassouba+, RA-L19] . VGG16LSTM . Target-dependent UNITER (TDU) [Ishikawa+,
RA-L21] UNITER[Chen+, ECCV20] . REVERIE task / dataset [Qi+, CVPR20] , REVERIE 12
• MAT[Ishikawa+, ICPR22] • CLIP[Radford+, ICML21] • Perceiver[Jaegle+, ICML21] 13
• MAT[Ishikawa+, ICPR22] • CLIP[Radford+, ICML21] • Perceiver[Jaegle+, ICML21] 14
• MAT[Ishikawa+, ICPR22] • CLIP[Radford+, ICML21] • Perceiver[Jaegle+, ICML21] 15
• MAT[Ishikawa+, ICPR22] • CLIP[Radford+, ICML21] • Perceiver[Jaegle+, ICML21] 16
• MAT[Ishikawa+, ICPR22] • CLIP[Radford+, ICML21] • Perceiver[Jaegle+, ICML21] 17
2 1 3
✓ 𝜹𝑡 ✓ 18 Input 𝜹𝑡 Output 1. 𝐸 𝜹
= CE 𝑓 𝒙 , 𝒚 ∇𝜹 𝐸 𝜹 = 𝜕𝐸 𝜕𝜹 2. ∇𝜹 𝐸 𝜹 𝒎𝑡 𝒗𝑡 𝒎𝑡 = 𝜌1 𝒎𝑡−1 + 1 − 𝜌1 ∇𝜹 𝐸 𝜹𝑡 𝒗𝑡 = 𝜌2 𝒗𝑡−1 + 1 − 𝜌2 ∇𝜹 𝐸 𝜹𝑡 2 3. 𝒎𝑡 𝒗𝑡 ∆𝜹𝒕 ෝ 𝒎𝑡 = 𝒎𝑡 1 − 𝜌1 𝑡 , ෝ 𝒗𝑡 = 𝒗𝑡 1 − 𝜌2 𝑡 ∆𝜹𝒕 = 𝜂 ෝ 𝒎𝑡 ෝ 𝒗𝑡 + 𝜖 4. 𝜹𝑡+1 = Π 𝜹 ≤𝜖 𝜹𝑡 + ∆𝜹𝒕 ∆𝜹𝒕 𝐹
✓ CLIP ✓ ViT[Dosovitskiy+, ICLR21] ✓ transformer [EOT] 19 [EOT]
✓ ✓ Perceiver CLIP 20 CLIP Encoders
✓ CLIP Encoders , Perceiver 21
✓ REVERIE-fetch dataset - REVERIE dataset ✓ REVERIE[Qi+, CVPR18] -
→ 1. , 2. https://yuankaiqi.github.io/REVERIE_Challenge/static/img/demo.gif 22 Matterport3D
✓ REVERIE-fetch dataset - REVERIE dataset ✓ REVERIE[Qi+, CVPR18] :
+ 23 , ↓ - REVERIE - - https://yuankaiqi.github.io/REVERIE_Challenge/static/img/demo.gif
✓ REVERIE-fetch dataset • REVERIE dataset #Samples Vocabulary size Average
sentence length 30532 2853 19.1 Training Validation Test 26808 2552 1172 24 “Look in the left wicker vase that is next to the potted plant”
“Go into the living room and give me the pillow
on the couch nearest the plant” 25 • → TDP-MAT
26 • → TDP-MAT ✓ Bounding box “Make haste to
the office and fluff the pillow sitting on the left of the chair”
• Acc [%] : 27 Condition Acc [%] ↑ Baseline
: TDU [Ishikawa+, IROS21] 73.3 0.485 Ours : TDP-MAT W/o MAT 72.5 3.55 W/o MAT + Smaller learning rate 74.4 0.831 W/o CLIP & Perceiver 74.1 1.47 W/o Pretraining 73.1 2.24 Full 75.3 0.691 +2.0
28 Condition Acc [%] ↑ Baseline : TDU [Ishikawa+, IROS21]
73.3 0.485 Ours : TDP-MAT W/o MAT 72.5 3.55 W/o MAT + Smaller learning rate 74.4 0.831 W/o CLIP & Perceiver 74.1 1.47 W/o Pretraining 73.1 2.24 Full 75.3 0.691 +2.8 - - 5 - ( ) - Smaller learning rate : 1/8 -
29 Condition Acc [%] ↑ Baseline : TDU [Ishikawa+, IROS21]
73.3 0.485 Ours : TDP-MAT W/o MAT 72.5 3.55 W/o MAT + Smaller learning rate 74.4 0.831 W/o CLIP & Perceiver 74.1 1.47 W/o Pretraining 73.1 2.24 Full 75.3 0.691 +1.2 - CLIP Encoders, Perceiver Module, - Cross Attention
30 Condition Acc [%] ↑ Baseline : TDU [Ishikawa+, IROS21]
73.3 0.485 Ours : TDP-MAT W/o MAT 72.5 3.55 W/o MAT + Smaller learning rate 74.4 0.831 W/o CLIP & Perceiver 74.1 1.47 W/o Pretraining 73.1 2.24 Full 75.3 0.691 +2.2 - TDU
✓ • ✓ • MAT • ✓ • 31
✓ ✓ 𝐿 𝑁 𝑅𝐿×𝐷 𝑅𝑁×𝐸 𝑅𝐿×𝐷, 𝑅𝑁×𝐷 → 𝑅𝐿×𝑁
𝑅𝐿×𝐷 𝑅𝐿×𝐷, 𝑅𝐿×𝐷 → 𝑅𝐿×𝐿 32
✓ ✓ ✓ ✓ 33
✓ 34 8 × 10−4 𝛽1 = 0.9, 𝛽2 =
0.99
✓ ✓ ✓ 35 19+6=25