Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[RSJ22] TDP-MAT: Multimodal Language Comprehens...
Search
Semantic Machine Intelligence Lab., Keio Univ.
PRO
September 05, 2022
Technology
0
820
[RSJ22] TDP-MAT: Multimodal Language Comprehension for Object Manipulation Tasks via Real Images
Semantic Machine Intelligence Lab., Keio Univ.
PRO
September 05, 2022
Tweet
Share
More Decks by Semantic Machine Intelligence Lab., Keio Univ.
See All by Semantic Machine Intelligence Lab., Keio Univ.
[RSJ25] Feasible RAG: Hierarchical Multimodal Retrieval with Feasibility-Aware Embodied Memory for Mobile Manipulation
keio_smilab
PRO
0
120
[RSJ25] LILAC: Language‑Conditioned Object‑Centric Optical Flow for Open‑Loop Trajectory Generation
keio_smilab
PRO
0
70
[RSJ25] Multilingual Scene Text-Aware Multimodal Retrieval for Everyday Objects Based on Deep State Space Models
keio_smilab
PRO
0
80
[RSJ25] Everyday Object Manipulation Based on Scene Text-Aware Multimodal Retrieval
keio_smilab
PRO
1
60
[RSJ25] Enhancing VLA Performance in Understanding and Executing Free-form Instructions via Visual Prompt-based Paraphrasing
keio_smilab
PRO
0
100
[Journal club] Generalized Contrastive Learning for Multi-Modal Retrieval and Ranking
keio_smilab
PRO
0
57
[Journal club] Steering Your Generalists: Improving Robotic Foundation Models via Value Guidance
keio_smilab
PRO
0
52
[Journal club] Influence-Balanced Loss for Imbalanced Visual Classification
keio_smilab
PRO
0
17
[Journal club] Learning to Rematch Mismatched Pairs for Robust Cross-Modal Retrieval
keio_smilab
PRO
0
33
Other Decks in Technology
See All in Technology
Autonomous Database - Dedicated 技術詳細 / adb-d_technical_detail_jp
oracle4engineer
PRO
4
10k
データアナリストからアナリティクスエンジニアになった話
hiyokko_data
2
440
新アイテムをどう使っていくか?みんなであーだこーだ言ってみよう / 20250911-rpi-jam-tokyo
akkiesoft
0
150
Automating Web Accessibility Testing with AI Agents
maminami373
0
1.2k
今!ソフトウェアエンジニアがハードウェアに手を出すには
mackee
11
4.6k
20250910_障害注入から効率的復旧へ_カオスエンジニアリング_生成AIで考えるAWS障害対応.pdf
sh_fk2
3
220
Kiroと学ぶコンテキストエンジニアリング
oikon48
6
9.9k
会社紹介資料 / Sansan Company Profile
sansan33
PRO
6
380k
EncryptedSharedPreferences が deprecated になっちゃった!どうしよう! / Oh no! EncryptedSharedPreferences has been deprecated! What should I do?
yanzm
0
190
AWSで始める実践Dagster入門
kitagawaz
1
580
「全員プロダクトマネージャー」を実現する、Cursorによる仕様検討の自動運転
applism118
19
8.6k
Terraformで構築する セルフサービス型データプラットフォーム / terraform-self-service-data-platform
pei0804
1
150
Featured
See All Featured
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
GraphQLの誤解/rethinking-graphql
sonatard
72
11k
Mobile First: as difficult as doing things right
swwweet
224
9.9k
Become a Pro
speakerdeck
PRO
29
5.5k
Optimizing for Happiness
mojombo
379
70k
The Cult of Friendly URLs
andyhume
79
6.6k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.9k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
840
Balancing Empowerment & Direction
lara
3
620
Raft: Consensus for Rubyists
vanstee
140
7.1k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
34
6k
Transcript
1
2
3 ✓ https://www.toyota.com/usa/toyota-effect/romy-robot
✓ : 4 “Look in the left wicker vase that
is next to the potted plant” Wicker vase :
✓ : “Look in the left wicker vase that is
next to the potted plant” 5 Wicker vase : Wicker vase Wicker vase Wicker vase
✓ : ✓ Key : “Look in the left wicker
vase that is next to the potted plant” 6 Wicker vase : Wicker vase Wicker vase Wicker vase
✓ REVERIE-fetch • 7 “Look in the left wicker vase
that is next to the potted plant”
✓ REVERIE-fetch • • (Instruction) (Context Regions) (Candidate Region) 8
“Look in the left wicker vase that is next to the potted plant”
✓ REVERIE-fetch • • (Instruction) (Context Regions) (Candidate Region) 9
“Look in the left wicker vase that is next to the potted plant”
✓ REVERIE-fetch • • (Instruction) (Context Regions) (Candidate Region) •
10 “Look in the left wicker vase that is next to the potted plant”
✓ REVERIE-fetch • • (Instruction) (Context Regions) (Candidate Region) •
11 “Look in the left wicker vase that is next to the potted plant” Faster R-CNN[Ren+, PAMI16]
MTCM [Magassouba+, RA-L19] . VGG16LSTM . Target-dependent UNITER (TDU) [Ishikawa+,
RA-L21] UNITER[Chen+, ECCV20] . REVERIE task / dataset [Qi+, CVPR20] , REVERIE 12
• MAT[Ishikawa+, ICPR22] • CLIP[Radford+, ICML21] • Perceiver[Jaegle+, ICML21] 13
• MAT[Ishikawa+, ICPR22] • CLIP[Radford+, ICML21] • Perceiver[Jaegle+, ICML21] 14
• MAT[Ishikawa+, ICPR22] • CLIP[Radford+, ICML21] • Perceiver[Jaegle+, ICML21] 15
• MAT[Ishikawa+, ICPR22] • CLIP[Radford+, ICML21] • Perceiver[Jaegle+, ICML21] 16
• MAT[Ishikawa+, ICPR22] • CLIP[Radford+, ICML21] • Perceiver[Jaegle+, ICML21] 17
2 1 3
✓ 𝜹𝑡 ✓ 18 Input 𝜹𝑡 Output 1. 𝐸 𝜹
= CE 𝑓 𝒙 , 𝒚 ∇𝜹 𝐸 𝜹 = 𝜕𝐸 𝜕𝜹 2. ∇𝜹 𝐸 𝜹 𝒎𝑡 𝒗𝑡 𝒎𝑡 = 𝜌1 𝒎𝑡−1 + 1 − 𝜌1 ∇𝜹 𝐸 𝜹𝑡 𝒗𝑡 = 𝜌2 𝒗𝑡−1 + 1 − 𝜌2 ∇𝜹 𝐸 𝜹𝑡 2 3. 𝒎𝑡 𝒗𝑡 ∆𝜹𝒕 ෝ 𝒎𝑡 = 𝒎𝑡 1 − 𝜌1 𝑡 , ෝ 𝒗𝑡 = 𝒗𝑡 1 − 𝜌2 𝑡 ∆𝜹𝒕 = 𝜂 ෝ 𝒎𝑡 ෝ 𝒗𝑡 + 𝜖 4. 𝜹𝑡+1 = Π 𝜹 ≤𝜖 𝜹𝑡 + ∆𝜹𝒕 ∆𝜹𝒕 𝐹
✓ CLIP ✓ ViT[Dosovitskiy+, ICLR21] ✓ transformer [EOT] 19 [EOT]
✓ ✓ Perceiver CLIP 20 CLIP Encoders
✓ CLIP Encoders , Perceiver 21
✓ REVERIE-fetch dataset - REVERIE dataset ✓ REVERIE[Qi+, CVPR18] -
→ 1. , 2. https://yuankaiqi.github.io/REVERIE_Challenge/static/img/demo.gif 22 Matterport3D
✓ REVERIE-fetch dataset - REVERIE dataset ✓ REVERIE[Qi+, CVPR18] :
+ 23 , ↓ - REVERIE - - https://yuankaiqi.github.io/REVERIE_Challenge/static/img/demo.gif
✓ REVERIE-fetch dataset • REVERIE dataset #Samples Vocabulary size Average
sentence length 30532 2853 19.1 Training Validation Test 26808 2552 1172 24 “Look in the left wicker vase that is next to the potted plant”
“Go into the living room and give me the pillow
on the couch nearest the plant” 25 • → TDP-MAT
26 • → TDP-MAT ✓ Bounding box “Make haste to
the office and fluff the pillow sitting on the left of the chair”
• Acc [%] : 27 Condition Acc [%] ↑ Baseline
: TDU [Ishikawa+, IROS21] 73.3 0.485 Ours : TDP-MAT W/o MAT 72.5 3.55 W/o MAT + Smaller learning rate 74.4 0.831 W/o CLIP & Perceiver 74.1 1.47 W/o Pretraining 73.1 2.24 Full 75.3 0.691 +2.0
28 Condition Acc [%] ↑ Baseline : TDU [Ishikawa+, IROS21]
73.3 0.485 Ours : TDP-MAT W/o MAT 72.5 3.55 W/o MAT + Smaller learning rate 74.4 0.831 W/o CLIP & Perceiver 74.1 1.47 W/o Pretraining 73.1 2.24 Full 75.3 0.691 +2.8 - - 5 - ( ) - Smaller learning rate : 1/8 -
29 Condition Acc [%] ↑ Baseline : TDU [Ishikawa+, IROS21]
73.3 0.485 Ours : TDP-MAT W/o MAT 72.5 3.55 W/o MAT + Smaller learning rate 74.4 0.831 W/o CLIP & Perceiver 74.1 1.47 W/o Pretraining 73.1 2.24 Full 75.3 0.691 +1.2 - CLIP Encoders, Perceiver Module, - Cross Attention
30 Condition Acc [%] ↑ Baseline : TDU [Ishikawa+, IROS21]
73.3 0.485 Ours : TDP-MAT W/o MAT 72.5 3.55 W/o MAT + Smaller learning rate 74.4 0.831 W/o CLIP & Perceiver 74.1 1.47 W/o Pretraining 73.1 2.24 Full 75.3 0.691 +2.2 - TDU
✓ • ✓ • MAT • ✓ • 31
✓ ✓ 𝐿 𝑁 𝑅𝐿×𝐷 𝑅𝑁×𝐸 𝑅𝐿×𝐷, 𝑅𝑁×𝐷 → 𝑅𝐿×𝑁
𝑅𝐿×𝐷 𝑅𝐿×𝐷, 𝑅𝐿×𝐷 → 𝑅𝐿×𝐿 32
✓ ✓ ✓ ✓ 33
✓ 34 8 × 10−4 𝛽1 = 0.9, 𝛽2 =
0.99
✓ ✓ ✓ 35 19+6=25