Upgrade to Pro — share decks privately, control downloads, hide ads and more …

「フーリエ級数」から「高速フーリエ変換」まで全部やります!【2019.07.20更新】

Sponsored · Your Podcast. Everywhere. Effortlessly. Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
Avatar for kenyu kenyu
July 09, 2019
94k

 「フーリエ級数」から「高速フーリエ変換」まで全部やります!【2019.07.20更新】

このスライドでは,
・フーリエ級数
・複素フーリエ級数
・フーリエ変換(連続)
・離散フーリエ変換(DFT)
・高速フーリエ変換(FFT)
を解説しています.

ブログはこちら
【フーリエ解析05】高速フーリエ変換(FFT)とは?内側のアルゴリズムを解説!【解説動画付き】
https://kenyu-life.com/2019/07/08/what_is_fft/

Twitter → https://twitter.com/kenyu0501_?lang=ja

Youtube → https://youtu.be/zWkQX58nXiw

Avatar for kenyu

kenyu

July 09, 2019
Tweet

More Decks by kenyu

Transcript

  1. ͚ΜΏʔ!LFOZV@ 5XJUUFS  山口大学大学院 博士課程/ 学術研究員/ ৴߸ॲཧΛֶ΅͏ʂ dϑʔϦΤղੳฤʂʂd ྑ͚Ε͹ϑΥϩʔ ͯ͠Լ͍͞ ໨࣍

    ೾ܗʹ͍ͭͯ෮श  ϑʔϦΤڃ਺  ෳૉϑʔϦΤڃ਺  ࿈ଓͳϑʔϦΤม׵  ཭ࢄϑʔϦΤม׵ %'5   ߴ଎ϑʔϦΤม׵ ''5 ͜ΕΒʹ͍ͭͯ΍͍͖ͬͯ·͢ʂ جૅ͔Βͱ͜ͱΜղઆ͍͖ͯ͠· ͢ɽ
  2. ৴߸ʹ͍ͭͯ ϑʔϦΤڃ਺΁ͷ༠͍ x y f(x, y) ۭؒతͳؔ਺ɿը૾ͱ͔ t ۭ࣌ؒతͳؔ਺ɿө૾ f(x,

    y, t) f(t) ࣌ؒతͳؔ਺ɿԹ౓ͱ͔ f(t)  ࣍ݩͷ৔߹Λߟ͑ΔͱେมͳͷͰɼ࣍ݩͰߟ͑Δ͜ͱʹ͢Δ ৭ʑͳ৴߸ʹ͍ͭͯ ࣍ݩͷؔ਺Λʮແݶݸͷࡾ֯ؔ਺ͷ࿨Ͱදݱ͢Δʯ ෳࡶ ͔΋͠Εͳ͍Α͏ ͳؔ਺ˠ୯७ͳؔ਺Λ଍ͨ͠΋ͷ ෳࡶͳ৴߸Λཧղ͢ΔͨΊͷπʔϧʂͲͷΑ͏ͳಛੑ͕͋Δͷ͔͕Θ͔Δ
  3. पظT ඵ f = 1 T पظؔ਺ t + T

    t ࣍ݩͷ࣌ؒؔ਺ ೾ܗ ʹؔ͢Δجຊ༻ޠͷ෮श प೾਺ ৼಈ਺ f ɹ୯Ґ࣌ؒʹؚ·ΕΔपظT ͷݸ਺ f(t + T) = f(t) ϑʔϦΤม׵ޙͷۭؒͰ͋Δप೾਺ྖҬ͕ ৴߸ॲཧΛߦ͏্Ͱͱͯ΋େࣄͳ΋ͷͰ͋Δ ৴߸ʹ͍ͭͯ ϑʔϦΤڃ਺΁ͷ༠͍ ͜ͷࢿྉͰ͸ɼ࣌ؒతͳؔ਺ ೾ Λѻ͍·͢ɽ ͦͷͨΊɼجຊతͳ༻ޠ΍ه߸ʹ͍ͭͯ෮श͓͖ͯ͠·͠ΐ͏ʂ ೾ܗͷॲཧΛ͢Δ্Ͱ͔ͳΓେࣄͳ֓೦Λͪΐͬͱ͚ͩઌʹऔΓ্͛·͢ɽ
  4. θ cos θ sin θ P(x, y) x y ϑʔϦΤม׵͸༩͑Βͨؔ਺Λࡾ֯ؔ਺

    ਖ਼ݭ೾ Ͱද͢ ਖ਼ݭ೾͸ԁͱਂؔ͘ΘΔ ВΛಈతʹଊ͑ɼಈܘOP͕୯Ґ࣌ؒ͋ͨΓʹਐΉ֯Λ֯प೾਺ω ͱ͢Δͱɼ ҎԼͷؔ܎͕੒Γཱͭ O y = sin θ x = cos θ θ = ωt ֯प೾਺ω Ͱಈܘ͕ճస͢Δͱ͖ɼ ͦͷಈܘͷ୯Ґ࣌ؒ͋ͨΓͷճస਺͸ৼಈ਺ प೾਺ fͳͷͰ f = ω 2π ֯प೾਺ω ͸पظT ͱͷؔ܎ͩͱɼҎԼʹͳΔ f = 1 T ω = 2π T ୯Ґԁ ֯प೾਺ ৴߸ʹ͍ͭͯ ϑʔϦΤڃ਺΁ͷ༠͍
  5. ϑʔϦΤղੳɹͦͷ dϑʔϦΤڃ਺ɾ௚ަجఈd f(t) = a0 + a1 cos ω0 t

    + b1 sin ω0 t + a2 cos 2ω0 t + b2 sin 2ω0 t + ⋯ ◼ϑʔϦΤڃ਺ͬͯԿʁʁʁͬͯਓ ∫ 2 T − 2 T 1 ⋅ sin nω0 tdt = ∫ 2 T − 2 T 1 ⋅ cos nω0 tdt = 0 ∫ 2 T − 2 T sin nω0 t cos nω0 tdt = 0 ◼௚ަجఈͬͯԿʁʁʁͬͯਓ f(t) = a0 + ∞ ∑ n=1 {an cos 2πn T0 t + bn sin 2πn T0 t} ͚ΜΏʔ!LFOZV@ 5XJUUFS  山口大学大学院 博士課程/ 学術研究員/
  6. ϑʔϦΤڃ਺ͱ͸ ਺΍ؔ਺ͷྻΛແݶʹՃ͑߹Θͤͨ΋ͷ f(t) a0 a1 cos ω0 t a2 cos

    2ω0 t b2 sin 2ω0 t b1 sin ω0 t ɾ ɾ ɾ ɾ ɾ ɾ ؔ਺f(t) ͕͋Δ஋ͷഒ਺ͷ֯प೾਺ω0 Λ΋ͭਖ਼ݭ೾ʹ෼ղ͞ΕΔ n = 0 n = 1 n = 2 f(t) = a0 + a1 cos ω0 t + b1 sin ω0 t + a2 cos 2ω0 t + b2 sin 2ω0 t + ⋯ ϑʔϦΤڃ਺Ͱද͍ͨؔ͠਺ ͦͷؔ਺͔ΒܾΊΒΕΔఆ਺ ֯प೾਺͸ఆ਺ഒʹͳΔˠ ഒͱ͔ɼഒͱ͔ɼ൒୺ͳ਺ࣈʹͳΒͳ͍ ϑʔϦΤڃ਺ ɹɹɹɾɾɾʮؔ਺͕ແݶݸͷࡾ֯ؔ਺ͷ࿨ͰදΘͤΔʯ ɹɹɹɾɾɾʮάϥϑ͕ਖ਼ݭ೾ͷॏͶ߹ΘͤͰදΘͤΔʯ
  7. ϑʔϦΤڃ਺ͷجຊपظͱجຊप೾਺ʹ͍ͭͯ ɹɹɹɾɾɾʮجຊप೾਺ͷ੔਺ഒͷਖ਼ݭ೾͔͠ग़ͯ͜ͳ͍͜ͱʹͳΔʯ ϑʔϦΤڃ਺ͷجຊप೾਺ͷܾ·Γ a0 a1 cos ω0 t a2 cos

    2ω0 t b2 sin 2ω0 t b1 sin ω0 t ɾ ɾ ɾ ɾ ɾ ɾ n = 0 n = 1 n = 2 f(t) جຊपظ͕TͳΒɼجຊप೾਺͸)[ʹͳΔɽ
 ͦͷ੔਺ഒ͔͠ݱΕͳ͍ͷͰɼ)[ )[ )[ͷ੒෼ɼɼɼʹͳΔɽ ͳͥͳΒɼجຊपظͷதͰɼ੔਺ݸͷ೾͕ऩ·Βͳ͍ͱ͍͚ͳ͍ͨΊʂ ଍͠߹Θͤͯपظతͳؔ਺ʹ͢ΔͨΊʂ جຊपظT0 ω0 = 2π T0 f0 = 1 T0 جຊपظT0 ʹΑͬͯɼ جຊप೾਺f0 ͕ܾ·Δ جຊप೾਺f0 ʹΑͬͯ جຊ֯प೾਺ω0 ͕ܾ·Δ
  8. ϑʔϦΤڃ਺ల։ͷΠϝʔδਤ f(t) t a0 a1 a2 b2 b1 a3 b3

    ɾ  ɾ  ɾ v = n T ωn = 2nπ T ֯प೾਺ प೾਺ 1, cos 2nπt T , sin 2nπt T 1, cos ωn t, sin ωn t ࣌ؒྖҬ प೾਺ྖҬ ϑʔϦΤڃ਺ͷ࿨Λߏ੒͢Δجຊ೾ ఆ ਺ ͱ ࡾ ֯ ؔ ਺ ͷ  ܎ ਺ Λ ܾ Ί Δ cos ω0 t cos 2ω0 t sin 2ω0 t sin ω0 t cos 3ω0 t sin 3ω0 t ఆ਺ ͷࡾ֯ؔ਺ ω0 = 0 ͷࡾ֯ؔ਺
  9. ϑʔϦΤڃ਺ͷཧ࿦ͱ܎਺ʹ͍ͭͯ f(t) T 2 − T 2 ͷؒͷؔ਺Λߟ͑Δ − T

    2 ≤ t ≤ T 2 ϑʔϦΤڃ਺͸༗ݶ۠ؒͰߟ͑Δɽର৅͸पظؔ਺Ͱ͋Δɽ f(t) = a0 + (a1 cos 2πt T + b1 sin 2πt T ) + (a2 cos 4πt T + b2 sin 4πt T ) + ⋯ + (an cos 2nπt T + bn sin 2nπt T ) + ⋯ ෯͕T Ͱ͋Ε͹ԿͰ΋ྑ͍ ɾ ɾ ɾ a0 = 1 T ∫ 2 T − 2 T f(t)dt an = 2 T ∫ 2 T − 2 T f(t)cos 2nπt T dt bn = 2 T ∫ 2 T − 2 T f(t)sin 2nπt T dt ϑʔϦΤڃ਺ͷཧ࿦ ϑʔϦΤڃ਺ల։ɾɾɾؔ਺ΛϑʔϦΤڃ਺Ͱද͢͜ͱ Ͱఆٛ͞ΕͨϑʔϦΤ܎਺ a0, a1, a2, ɾɾɾ, b1, b2, ɾɾɾ ΛٻΊΔ − T 2 ≤ t ≤ T 2 ˠޙ΄Ͳৄ͘͠ಋग़͢Δ f(t) = a0 + ∞ ∑ n=1 {an cos 2πn T0 t + bn sin 2πn T0 t}
  10. ϑʔϦΤڃ਺ల։͞Εͨؔ਺͸पظT Ͱ܁Γฦ͢ f(t) = a0 + (a1 cos 2πt T

    + b1 sin 2πt T ) + (a2 cos 4πt T + b2 sin 4πt T ) + ⋯ + (an cos 2nπt T + bn sin 2nπt T ) + ⋯ a0 a1 a2 b2 b1 a3 b3 ɾ  ɾ  ɾ पظT ͷपظؔ਺ ܁Γฦ͢ f(t) T 2 − T 2 a0 a1 a2 b2 b1 a3 b3 ɾ  ɾ  ɾ a0 a1 a2 b2 b1 a3 b3 ɾ  ɾ  ɾ ϑʔϦΤڃ਺͸ɼपظT ͷؔ਺ʹ͢Δ͜ͱ f(t) ϑʔϦΤڃ਺͸पظT ͷपظؔ਺Ͱ͋Δ
  11. ؔ਺f(t) Λ௚ަ͢ΔجఈͱͳΔ ؔ਺ Ͱදͨ͠ͷ͕ϑʔϦΤڃ਺ ϑʔϦΤڃ਺ͷ௚ަجఈͷΠϝʔδਤ ɾؔ਺Λۭؒͷ఺ͱ͢Δ ɾ఺Λࢦ͢ϕΫτϧ͕ʮجఈʯͱݺ͹ΕΔ૊ͷϕΫτϧͷҰ࣍݁߹ʹͳΔ ฏ໘ϕΫτϧ͸ɼ௚ަ͢ ΔʮجఈϕΫτϧʯͷҰ ࣍݁߹Ͱද͞ΕΔ

    P e1 e2 O OP = a1 e1 + a2 e2 f(t) = a0 + ⋯ + an cos nω0 t + bn sin nω0 t + ⋯ f(t) cos ω0 t sin ω0 t 1, cos nω0 t, sin nω0 t ϑʔϦΤڃ਺ͷཧ࿦͸ɼؔ਺ۭؒͰΠϝʔδ͢Δͱ෼͔Γ΍͍͢
  12. ௚ަੑͷؔ܎ɿؔ਺ͷੵͷੵ෼=಺ੵ e1 e2 e1 ⋅ e2 = 0 ∫ a

    b f(t)g * (t)dt ؔ਺ͷ಺ੵ (b ≤ t ≤ a) ؔ਺ͷ಺ੵͬͯ ฏ໘ϕΫτϧͱ਺ֶతʹҰॹ g * (t) = g(t) ͕࣮਺ͷ৔߹ g(t) ௚ަͱ͸ʂʁ ʮجఈʯͱͳΔؔ਺ηοτ͸௚ަੑΛ࣋ͨͳ͚Ε͹͍͚ͳ͍ɽ ೋͭͷϕΫτϧ͕௚ަͰ͋Δͱ͖ɼ಺ੵ͸ ؔ਺ͷ಺ੵͬͯͲ͏ॻ͘ͷ͔ʂʁ Ҏ্ͷؔ਺ͷੵ෼͕ͷͱ͖ɼ֤ؔ਺͸௚ަ͍ͯ͠Δ ΞελϦεΫɹ͸ɼෳૉڞ໾ɽ ෳૉڞ໾ΛऔΔͱ͍͏͜ͱ͸ɼෳ ૉฏ໘্Ͱɼ࣮࣠ʹରͯ͠ର৅ͳ Ґஔʹಈ͔͢ɽ * ϑʔϦΤڃ਺Ͱ͸ؔ܎ͳ͍ɽ ෳૉϑʔϦΤڃ਺Ͱେࣄɽ
  13. ∫ a b f(t)g(t)dt = 0 ௚ަੑ (b ≤ t

    ≤ a) ؔ਺ͷ಺ੵ͸ͳͥੵ෼Λ͢Δͷ͔ʂʁ ʮ֤ؔ਺ͷֻ͚ࢉͷੵ෼஋= 0Ͱ௚ަ͍ͯ͠ΔʯΛղऍ͢Δ ֤ؔ਺Λʮແݶ࣍ݩϕΫτϧʯͱݟͳ͢ f(t) = ( f1 , f2 , f3 , f4 , f5 , f6 , f7 ) g(t) = (g1 , g2 , g3 , g4 , g5 , g6 , g7 ) f(t) a b f1 f2 f3 f4 f5 f6 f7 g(t) a b g1 g2 g3 g4 g5 g6 g7 ྫʼ࣍ݩͰݟͳ͢ͱʜ ؔ਺ΛҎԼͷΑ͏ʹϕΫτϧͰݟͳ͢ ಺ੵͬͯɼ֤ཁૉ͝ͱʹֻ͚ͯ ૯࿨ΛͱΔΑͶʁ 7 ∑ i=1 fi gi ͜Μͳײ͡ ࠓ͸࣍ݩϕΫτϧ͚ͩͲɼ͜ΕΛແݶ࣍ݩϕΫτϧ ͱͨ͠Βɼ૯࿨͕ʮੵ෼ʯʹͳΔɽ ͭ·Γɼੵ෼ͩͱɼϕΫτϧͷ಺ੵͱΈͳͤΔ ௚ަੑͷؔ܎ɿؔ਺ͷੵͷੵ෼಺ੵ
  14. f(t) a b f1 ֤ؔ਺Λʮແݶ࣍ݩϕΫτϧʯͱݟͳ͢ ྫʼ࣍ݩ ྫʼ࣍ݩ ྫʼແݶ࣍ݩ f(t) a

    b f1 f2 f3 f4 f(t) a b f1 f2 f3 f4 f5 f6 f7 f(t) = ( f1 , f2 , f3 , f4 , f5 , f6 , f7 ) f(t) = ( f1 , f2 , f3 , f4 ) f(t) = ( f1 , ⋯, f∞ ) f∞ f(t) = ( f1 , ⋯, f∞ ) g(t) = (g1 , ⋯, g∞ ) f(t) = ( f1 , f2 , f3 , f4 , f5 , f6 , f7 ) g(t) = (g1 , g2 , g3 , g4 , g5 , g6 , g7 ) ಺ੵͬͯɼ֤ཁૉ͝ͱʹֻ͚ͯ૯࿨ΛͱΔ 7 ∑ i−1 fi gi ͜Μͳײ͡ ྫʼ࣍ݩ ∞ ∑ i=1 fi gi ∫ ∞ i=1 fi gi dt ྫʼແݶ࣍ݩ ແݶ࣍ݩΛߟ͑Δͱ ݁ہੵ෼ʹͳΔʂ ϑʔϦΤڃ਺ɿؔ਺Λແݶ࣍ݩϕΫτϧͱͯ͠ද͢Πϝʔδਤ
  15. ؔ਺f(t) Λ௚ަ͢ΔجఈͱͳΔ ؔ਺ Ͱදͨ͠ͷ͕ϑʔϦΤڃ਺ ϑʔϦΤڃ਺ͷେࣄͳࣜ f(t) = a0 + ⋯

    + an cos nω0 t + bn sin nω0 t + ⋯ f(t) cos ω0 t sin ω0 t 1, cos nω0 t, sin nω0 t ∫ 2 T − 2 T 1 ⋅ sin nω0 tdt = ∫ 2 T − 2 T 1 ⋅ cos nω0 tdt = 0 ∫ 2 T − 2 T sin nω0 t cos nω0 tdt = 0 ∫ 2 T − 2 T sin nω0 t sin mω0 tdt = 0 ∫ 2 T − 2 T cos nω0 t cos mω0 tdt = 0 ∫ 2 T − 2 T 12dt = T ∫ 2 T − 2 T sin n2ω0 tdt = ∫ 2 T − 2 T cos n2ω0 tdt = T 2 ʮϑʔϦΤ܎਺ͷಋग़ʹඞཁͳੑ࣭ʯ ʮ௚ަجఈʯ
  16. ϑʔϦΤ܎਺ͷಋग़a0 ʮϑʔϦΤ܎਺ a0, an, bn ͷಋग़ʯ cos nω0 t, sin

    nω0 t a0 ʮશͯͷ߲ʹΛֻ͚ͯੵ෼ʯˠ௚ަجఈͷੑ࣭ ੵ෼஋ ͔Βಋग़Ͱ͖Δ ∫ 2 T − 2 T f(t)dt = ∫ 2 T − 2 T a0 dt + ∫ 2 T − 2 T a1 cos ω0 tdt + ∫ 2 T − 2 T b1 sin ω0 tdt + ⋯ + ∫ 2 T − 2 T an cos nω0 tdt + ∫ 2 T − 2 T bn sin nω0 tdt + ⋯ ∫ 2 T − 2 T 1 ⋅ sin nω0 tdt = ∫ 2 T − 2 T 1 ⋅ cos nω0 tdt = 0 ʮ௚ަجఈʯͷੑ࣭ ͚ͩ͜͜࢒Δ ∫ 2 T − 2 T f(t)dt = a0[t] 2 T − 2 T a0 = 1 T ∫ 2 T − 2 T f(t)dt     ಉ༷ʹan, bn ΋ɼͦΕͧΕಋग़Ͱ͖Δ f(t) = a0 + a1 cos ω0 t + b1 sin ω0 t + ⋯ + a2 cos nω0 t + b2 sin nω0 t + ⋯ Λશମʹֻ͚ͯੵ෼ ٻΊ͍ͨϑʔϦΤ܎਺Ҏ֎͕ফ͑ΔΑ͏ʹ ޻෉ͯࣜ͠มܗΛߦ͏͚ͩʂʂ पظͷதʹͪΐ͏Ͳ੔਺ ݸͷ೾͕ऩ·ΔͷͰੵ෼ ͢ΔͱzzͱΠϝʔδ͢Δ ͱ෼͔Γ΍͍͢ ݩͷ৴߸f(t) ͷ࣌ؒతͳฏۉ஋ˠ௚ྲྀ੒෼ͱͳΔ a0 :
  17. ʮϑʔϦΤ܎਺ a0, an, bn ͷಋग़ʯ +⋯ + ∫ 2 T

    − 2 T an cos nω0 t cos nω0 tdt + ∫ 2 T − 2 T bn sin nω0 t cos nω0 tdt + ⋯ an ʮશͯͷ߲ʹΛֻ͚ͯੵ෼ ∫ 2 T − 2 T f(t)cos nω0 tdt = ∫ 2 T − 2 T a0 cos nω0 tdt + ∫ 2 T − 2 T a1 cos ω0 t cos nω0 tdt + ∫ 2 T − 2 T b1 sin ω0 t cos nω0 tdt ʮ௚ަجఈʯͷੑ࣭ ͚ͩ͜͜࢒Δ an = 2 T ∫ 2 T − 2 T f(t)cos nω0 tdt     f(t) = a0 + a1 cos ω0 t + b1 sin ω0 t + ⋯ + a2 cos nω0 t + b2 sin nω0 t + ⋯ cos nω0 t ∫ 2 T − 2 T f(t)cos nω0 tdt = ∫ 2 T − 2 T an cos nω0 t cos nω0 tdt ∫ 2 T − 2 T sin n2ω0 tdt = ∫ 2 T − 2 T cos n2ω0 tdt = T 2 ∫ 2 T − 2 T sin nω0 t cos nω0 tdt = 0 ∫ 2 T − 2 T cos nω0 t cos mω0 tdt = 0 ϑʔϦΤ܎਺ͷಋग़an
  18. ʮϑʔϦΤ܎਺ a0, an, bn ͷಋग़ʯ +⋯ + ∫ 2 T

    − 2 T an cos nω0 t sin nω0 tdt + ∫ 2 T − 2 T bn sin nω0 t sin nω0 tdt + ⋯ bn ʮશͯͷ߲ʹΛֻ͚ͯੵ෼ ∫ 2 T − 2 T f(t)sin nω0 tdt = ∫ 2 T − 2 T a0 sin nω0 tdt + ∫ 2 T − 2 T a1 cos ω0 t sin nω0 tdt + ∫ 2 T − 2 T b1 sin ω0 t sin nω0 tdt ʮ௚ަجఈʯͷੑ࣭ ͚ͩ͜͜࢒Δ bn = 2 T ∫ 2 T − 2 T f(t)sin nω0 tdt     f(t) = a0 + a1 cos ω0 t + b1 sin ω0 t + ⋯ + a2 cos nω0 t + b2 sin nω0 t + ⋯ sin nω0 t ∫ 2 T − 2 T f(t)sin nω0 tdt = ∫ 2 T − 2 T bn sin nω0 t sin nω0 tdt ∫ 2 T − 2 T sin n2ω0 tdt = ∫ 2 T − 2 T cos n2ω0 tdt = T 2 ∫ 2 T − 2 T sin nω0 t cos nω0 tdt = 0 ∫ 2 T − 2 T sin nω0 t sin mω0 tdt = 0 ϑʔϦΤ܎਺ͷಋग़bn
  19. ϑʔϦΤڃ਺ల։ͷผͷදهํ๏ cosͱsin ͸Ґ૬͕1/4 ͣΕͯΔ͚ͩͳͷͰɼ·ͱΊΔ͜ͱ͕Ͱ͖Δ n ഒͰ͔͠ݱΕͳ͍ f(t) = a0 +

    a1 cos ω0 t + b1 sin ω0 t + ⋯ + an cos nω0 t + bn sin nω0 t + ⋯ an cos nω0 t + bn sin nω0 t a2 n + b2 n ( an a2 n + b2 n cos nω0 t + bn a2 n + b2 n sin nω0 t ) θn ( an a2 n + b2 n , bn a2 n + b2 n ) tan θn = an bn θn = tan−1 an bn a2 n + b2 n ( sin θn cos nω0 t + cos θn sin nω0 t ) An sin ( nω0 t + θn) ಉ͡प೾਺ͷcos ͱsin ͕ͭͷsin Ͱهड़͢Δ͜ͱ͕Ͱ͖Δ ϑʔϦΤڃ਺ల։͸ɼల։͞Ε֤ͨsin ೾ͦΕͧΕͷৼ෯ͱҐ૬ ΛٻΊΔ͜ͱͰ΋දݱ͢Δ͜ͱ͕Ͱ͖Δɽ An = a2 n + b2 n y x
  20. ϑʔϦΤڃ਺͓͞Β͍ f(t) = a0 + ⋯ + an cos nω0

    t + bn sin nω0 t + ⋯ f(t) cos ω0 t sin ω0 t ؔ਺f(t) Λ௚ަ͢ΔجఈͱͳΔ ؔ਺ Ͱදͨ͠ͷ͕ϑʔϦΤڃ਺ 1, cos nω0 t, sin nω0 t ∫ 2 T − 2 T 1 ⋅ sin nω0 tdt = ∫ 2 T − 2 T 1 ⋅ cos nω0 tdt = 0 ∫ 2 T − 2 T sin nω0 t cos nω0 tdt = 0 ∫ 2 T − 2 T sin nω0 t sin mω0 tdt = 0 ∫ 2 T − 2 T cos nω0 t cos mω0 tdt = 0 ʮ௚ަجఈʯ ∫ 2 T − 2 T 12dt = T ʮϑʔϦΤ܎਺ͷಋग़ʹඞཁͳੑ࣭ʯ ∫ 2 T − 2 T sin n2ω0 tdt = ∫ 2 T − 2 T cos n2ω0 tdt = T 2 f(t) = a0 + (a1 cos 2πt T + b1 sin 2πt T ) + (a2 cos 4πt T + b2 sin 4πt T ) + ⋯ + (an cos 2nπt T + bn sin 2nπt T ) + ⋯ a0 = 1 T ∫ 2 T − 2 T f(t)dt an = 2 T ∫ 2 T − 2 T f(t)cos 2nπt T dt bn = 2 T ∫ 2 T − 2 T f(t)sin 2nπt T dt
  21. ϑʔϦΤղੳɹͦͷ dϑʔϦΤڃ਺ɾ௚ަجఈ ࿅श໰୊ฤ d f(t) = a0 + a1 cos

    ω0 t + b1 sin ω0 t + a2 cos 2ω0 t + b2 sin 2ω0 t + ⋯ ϑʔϦΤڃ਺ͬͯԿʁʁʁͬͯਓ ∫ 2 T − 2 T 1 ⋅ sin nω0 tdt = ∫ 2 T − 2 T 1 ⋅ cos nω0 tdt = 0 ∫ 2 T − 2 T sin nω0 t cos nω0 tdt = 0 ௚ަجఈͬͯԿʁʁʁͬͯਓ ͚ΜΏʔ!LFOZV@  山口大学大学院 博士課程/ 学術研究員/ ࿅श໰୊ฤ ղઆ͸:PVUVCFʹʂ
  22. ϑʔϦΤղੳɹͦͷ dෳૉϑʔϦΤڃ਺ͱ͸d f(t) = ⋯ + c−n e−i 2πnt T

    + ⋯ + c−1 e−i 2πt T + c0 + c1 ei 2πt T + ⋯ + c+n ei 2πnt T + ⋯ ◼ෳૉϑʔϦΤڃ਺ͬͯԿʁʁʁ ∫ 2 T − 2 T ei 2πm T te−i 2πn T tdt = ◼ෳૉϑʔϦΤڃ਺ͷ௚ަجఈͬͯԿʁʁʁ { 0 (m ≠ n) T (m = n) eiθ = cos θ + i sin θ ΦΠϥʔͷެࣜ΋࢖͏Αʂ ͚ΜΏʔ!LFOZV@ 5XJUUFS  山口大学大学院 博士課程/ 学術研究員/
  23. ʮϑʔϦΤڃ਺ʯͱʮෳૉϑʔϦΤڃ਺ʯͷҧ͍ f(t) = a0 + a1 cos ω0 t +

    b1 sin ω0 t + ⋯ + an cos nω0 t + bn sin nω0 t + ⋯ f(t) = ⋯ + c−n e−iω0 nt + ⋯ + c−1 e−iω0 t + c0 + c1 eiω0 t + ⋯ + cn eiω0 nt + ⋯ ω0 2ω0 nω0 0 ⋯ ⋯ a0 a1 a2 an b1 b2 bn ω cosͱsin Λ༻͍ͯɼω0 ͷ੔਺ഒͷप೾਺Λ࣋ͭ੒෼ΛݟΔ ⋯ ⋯ ω0 2ω0 0 −ω0 −2ω0 nω0 −nω0 |c0 | |c1 | |c2 | |cn | |c−1 | |c−2 | |c−n | ⋯ ⋯ ω0 2ω0 0 −ω0 −2ω0 nω0 −nω0 ∠c0 ∠c1 ∠c2 ∠cn ∠c−1 ∠c−2 ∠c−n ω ω f(t) t ʮϑʔϦΤڃ਺ʯͱʮෳૉϑʔϦΤڃ਺ʯͷΠϝʔδ ෳૉࢦ਺ؔ਺Λ࢖ͬͯɼ֯प೾਺੒෼ͷৼ෯ͱҐ૬Λ໌ࣔతʹࣔ͢ e−iω0 t ਺ֶతʹ औΓѻ͍ʹ͍͘ ਺ֶతʹ औΓѻ͍қ͍ ෳૉ਺ͷੈքͷల։͢Δ ɹɾల։͕ࣜ៉ྷʹͳΔ ɹɾϑʔϦΤม׵ʹͭͳ͕Δ
  24. ෳૉϑʔϦΤڃ਺ͷزԿֶతཧղͷͨΊʹ ࡾ֯ؔ਺ͷΠϝʔδ sin ω0 t Im Re t Im Re

    t ෳૉࢦ਺ؔ਺ͷΠϝʔδ t eiω0 t e−iω0 t ϑʔϦΤڃ਺΋ෳૉϑʔϦΤڃ਺΋ɼ୯ʹ೾ͷ଍͠߹Θͤ ࣮࣠ͱڏ࣠Λճస͠ͳ͕ Βɼ࣌ؒ࣠ํ޲ʹਐΜͰ ͍͘ͷͰཐટʹͳΔ ্Լʹৼಈ͠ɼ ࣌ؒ࣠ํ޲ʹਐΜͰ͍͘
  25. ϑʔϦΤڃ਺ˠෳૉϑʔϦΤڃ਺΁ͷ༠͍ ͜Ε·ͰͷϑʔϦΤڃ਺ͷཧ࿦὎࣮਺ͷੈքͷల։ ࣮͸͜ͷ··ͷల։ͩͱɼ਺ֶతʹѻ͍ʹ͍͘ɽ f(t) = a0 + ∞ ∑ n=1

    (an cos nω0 t + bn sin nω0 t) f(t) = ∞ ∑ n=0 An sin(nω0 t + θn) eiθ = cos θ + i sin θ θn ( an a2 n + b2 n , bn a2 n + b2 n ) y x θn cos θn + i sin θn Im Re i 1 ͜Ε·Ͱ࣮਺্Ͱ͔͠ఆٛ͞Ε͍ͯͳ͔ͬͨ ؔ਺Λෳૉ਺ʹ޿͛ΔΑ͏ʹఆٛ͠௚͢ɽ ΦΠϥʔͷެࣜ eiθ ͸ɼෳૉฏ໘ͷ୯Ґԁ্ͷภ֯ВͷҐஔ
  26. ৄࡉͳࣜมܗ ΦΠϥʔͷެࣜΛ࢖༻ͯ͠ɼϑʔϦΤڃ਺ΛෳૉϑʔϦΤڃ਺΁ͱ͢Δ eiθ = cos θ + i sin θ

    e−iθ = cos θ − i sin θ cos θ = eiθ + e−iθ 2 sin θ = eiθ − e−iθ 2i f(t) = a0 + ∞ ∑ n=1 (an cos nω0 t + bn sin nω0 t) f(t) = a0 + ∞ ∑ n=1 (an einω0 t + e−inω0 t 2 + bn einω0 t − e−inω0 t 2i ) f(t) = a0 + ∞ ∑ n=1 ( an − ibn 2 einω0 t + an + ibn 2 e−inω0 t ) f(t) = ∞ ∑ n=−∞ cn einω0 t −1 → − ∞ +1 → + ∞ −∞ → + ∞ Ұͭʹ·ͱΊΔ cn ɿϑʔϦΤ܎਺ f(t) = ⋯ + c−n e−i 2πnt T + ⋯ + c−1 e−i 2πt T + c0 + c1 ei 2πt T + ⋯ + cn ei 2πnt T + ⋯ ෳૉϑʔϦΤڃ਺͸ʮෳૉࢦ਺ؔ਺ʯͰల։͢Δ΋ͷ͚ͩͷ΋ͷ
  27. ෳૉϑʔϦΤڃ਺ͷ௚ަੑ͸ʂʁ ෳૉࢦ਺ؔ਺΋௚ަੑΛ࣋ͭ
 ɹෳૉࢦ਺ؔ਺͸ࡾ֯ؔ਺͔Βग़དྷ͍ͯΔͷͰɼࡾ֯ؔ਺ͷ௚ަੑΛҾ͖ܧ͍Ͱ͍Δ f(t) = ⋯ + c−n e−i 2πnt

    T + ⋯ + c−1 e−i 2πt T + c0 + c1 ei 2πt T + ⋯ + cn ei 2πnt T + ⋯ ʮ௚ަجఈʯͰ͋Δඞཁ͕͋Δˠ͓ޓ͍ͷؔ਺ͷੵ෼஋͕
 ฏ໘ϕΫτϧͰ͍͏಺ੵ P e1 e2 O OP = a1 e1 + a2 e2 f(t) cn ei 2πn T t c−n e−i 2πn T t f(t) = ⋯ + c−n e−i 2πnt T + ⋯ + cn ei 2πnt T + ⋯ ؔ਺ۭؒͷ఺f(t) ͸
 ௚ަجఈͱͳΔؔ਺ ηοτͰల։͞ΕΔ ฏ໘ϕΫτϧ͸ɼ ௚ަ͢Δʮجఈϕ ΫτϧʯͷҰ࣍݁ ߹Ͱද͞ΕΔ
  28. ؔ਺ͷ಺ੵͷܭࢉʹ͍ͭͯ ෳૉࢦ਺ؔ਺΋௚ަੑΛ࣋ͭ
 ɹෳૉࢦ਺ؔ਺͸ࡾ֯ؔ਺͔Βग़དྷ͍ͯΔͷͰɼࡾ֯ؔ਺ͷ௚ަੑΛҾ͖ܧ͍Ͱ͍Δ ∫ a b f(t)g * (t)dt ؔ਺ͷ಺ੵ

    (b ≤ t ≤ a) g * (t) = g(t) ͕࣮਺ͷ৔߹ g(t) ؔ਺ͷ಺ੵͬͯͲ͏ॻ͘ͷ͔ʂʁ ΞελϦεΫɹ͸ɼෳૉڞ໾ɽ * ෳૉϑʔϦΤڃ਺Ͱ͸ɼڏ਺ه߸ iͷූ߸͕ೖΕସΘΔΑʂ
 ࣮࣠ʹରͯ͠ର৅͔ͩΒͶʂ ∫ 2 T − 2 T ei 2πm T te−i 2πn T tdt ∫ 2 T − 2 T ei 2πm T t{ei 2πn T t} * dt θn eiθ = cos θn + i sin θn Im Re i 1 e−iθ = cos θn − i sin θn {eiθ} * ෳૉ਺ͷϕΫτϧͰɼ಺ੵΛܭࢉΛ͢Δͱ͖ʹ͸ɼยํ͸ෳૉڞ໾ʹ͢Δͷ͕ϧʔϧ ʮෳૉڞ໾Λֻ͚ͯੵ෼ʂʯ
  29. ∫ 2 T − 2 T ei 2πm T te−i

    2πn T tdt = { 0 (m ≠ n) T (m = n) f(t) = a0 + ⋯ + an cos nω0 t + bn sin nω0 t + ⋯ f(t) cos ω0 t sin ω0 t ∫ 2 T − 2 T 1 ⋅ sin nω0 tdt = ∫ 2 T − 2 T 1 ⋅ cos nω0 tdt = 0 ∫ 2 T − 2 T sin nω0 t cos nω0 tdt = 0 ∫ 2 T − 2 T sin nω0 t sin mω0 tdt = 0 ∫ 2 T − 2 T cos nω0 t cos mω0 tdt = 0 ʮ௚ަجఈʯ f(t) = a0 + (a1 cos 2πt T + b1 sin 2πt T ) + (a2 cos 4πt T + b2 sin 4πt T ) + ⋯ + (an cos 2nπt T + bn sin 2nπt T ) + ⋯ ෳૉࢦ਺ؔ਺ͷʮ௚ަجఈʯ ϑʔϦΤڃ਺ͷ෮शɾɾɾͪͳΈʹϑʔϦΤڃ਺ͷ௚ަجఈ͸ͪ͜Β ఆٛҬͷ֓೦͸͍࣋ͬͯΔ  पظT (n = 0, ± 1, ± 2, ⋯) ௚ަجఈͷੑ࣭
  30. ෳૉϑʔϦΤڃ਺ͷ܎਺Λಋग़͢Δ ʮల։ࣜͷ྆ลʹɼӈ͔ΒɹɹɹɹΛ͔͚Δʯˠʮͦͷޙ۠ؒT Ͱੵ෼ʯ f(t) = ⋯ + c−n e−i 2πnt

    T + ⋯ + c−1 e−i 2πt T + c0 + c1 ei 2πt T + ⋯ + cn ei 2πnt T + ⋯ cn ∫ 2 T − 2 T f(t)ei−2πnt T dt = ⋯ + cn−1 ∫ 2 T − 2 T ei 2π(n − 1)t T e−i 2πnt T dt + cn ∫ 2 T − 2 T ei 2πnt T e−i 2πnt T dt + cn+1 ∫ 2 T − 2 T ei 2π(n + 1)t T e−i 2πnt T dt + ⋯ e−i 2πnt T   ͚ͩ͜͜࢒Δ ∫ 2 T − 2 T f(t)e−i 2πnt T dt = cn ∫ 2 T − 2 T ei 2πnt T e−i 2πnt T dt T ʹͳΔ cn = 1 T ∫ 2 T − 2 T f(t)e−i 2πnt T dt ∫ 2 T − 2 T ei 2πm T te−i 2πn T tdt = { 0 (m ≠ n) T (m = n) ʮ௚ަجఈʯͷੑ࣭ ෳૉϑʔϦΤ܎਺ͷಋग़cn
  31. ෳૉϑʔϦΤڃ਺ల։ͷϚΠφεଆΛߟ͑Δ ΦΠϥʔͷެ͔ࣜΒղऍ͢Δ cos θ = eiθ + e−iθ 2 ϓϥεଆͷθ

    ϚΠφεଆͷθ ଍ͯ͠2 ͰׂΔͱcos θ ͕ͰΔ θ eiθ Im Re i 1 e−iθ ڏ෦ଆ͕ͪΐ͏Ͳ ফ͑ͯɼ࣮෦͕࢒Δ f(t) = ⋯ + c−n e−i 2πnt T + ⋯ + c−2 e−i 4πt T + c−1 e−i 2πt T + c0 + c1 ei 2πt T + c2 ei 4πt T + ⋯ + cn ei 2πnt T + ⋯ ࣮਺f(t)ͷ৔߹΋ಉ༷ʹߟ͑Δ ଍͠߹Θ͞Εͯɼͪΐ͏Ͳڏ਺෦͕ফ͑Δ |cn | = |c−n | t = 0 ͷ࣌ ॳظҐஔ ΋ߟ͑ͯɼภ֯Λಋग़͢Δ ڞ໾ͳؔ܎Ͱ͓ޓ͍͕ৗʹଧͪফ͠߹͏ͷͰɼ Im Re t Im Re t ∠cn = − ∠c−n c+1 eiω0 t c−1 e−iω0 t େ͖͕͞ಉ͡Ͱූ߸͕ٯ
  32. ɹɹͷΈͰৼ෯ͱ Ґ૬Λද͢͜ͱ͕ Ͱ͖ͯخ͍͠ʂ ࣮਺஋f(t)ʹର͢ΔෳૉϑʔϦΤڃ਺ల։͸ɼɹɹɹ͕େࣄͳ৘ใͰ͋Δ ෳૉϑʔϦΤ܎਺ͷҙຯ߹͍ ⋯ ⋯ ω0 2ω0 0

    −ω0 −2ω0 nω0 −nω0 |c0 | |c1 | |c2 | |cn | |c−1 | |c−2 | |c−n | ⋯ ⋯ ω0 2ω0 0 −ω0 −2ω0 nω0 −nω0 ∠c0 ∠c1 ∠c2 ∠cn ∠c−1 ∠c−2 ∠c−n ω ω f(t) t ʮϑʔϦΤڃ਺ʯͱʮෳૉϑʔϦΤڃ਺ʯͷΠϝʔδ ෳૉࢦ਺ؔ਺Λ࢖ͬͯɼ֯प೾਺੒෼ͷৼ෯ͱҐ૬Λ໌ࣔతʹࣔ͢ e−iω0 t 0 ≤ n 0 ≤ n ˞ෳૉ਺஋f(t)Ͱ͋Ε͹஫ҙʂ ৼ෯εϖΫτϧ Ґ૬εϖΫτϧ f(t) = ⋯ + c−n e−i 2πnt T + ⋯ + c−2 e−i 4πt T + c−1 e−i 2πt T + c0 + c1 ei 2πt T + c2 ei 4πt T + ⋯ + cn ei 2πnt T + ⋯ cn |cn |2 ύϫʔεϖΫτϧ
  33. ϑʔϦΤղੳɹͦͷ dෳૉϑʔϦΤڃ਺ ࿅श໰୊ ͱ͸d f(t) = ⋯ + c−n e−i

    2πnt T + ⋯ + c−1 e−i 2πt T + c0 + c1 ei 2πt T + ⋯ + c−n ei 2πnt T + ⋯ ◼ෳૉϑʔϦΤڃ਺ͬͯԿʁʁʁ ∫ 2 T − 2 T ei 2πm T te−i 2πn T tdt = ◼ෳૉϑʔϦΤͷ௚ަجఈͬͯԿʁʁʁ ͚ΜΏʔ!LFOZV@  山口大学大学院 博士課程/ 学術研究員/ { 0 (m ≠ n) T (m = n) ࿅श໰୊ฤ f(t) = { 0 (−π ≤ t < 0) 1 (0 ≤ t ≤ π) ◼࣍ͷؔ਺ΛෳૉϑʔϦΤڃ਺Ͱදͤɽ −π π t f(t) 1 ղઆ͸:PVUVCFʹʂ
  34. ϑʔϦΤղੳɹͦͷ dϑʔϦΤม׵ͱ͸d ◼ϑʔϦΤม׵ͬͯԿʁʁʁ ࣌ؒྖҬ प೾਺ྖҬ प೾਺ྖҬΛ֬ೝ Ͱ͖ͨΒԿ͕خ͍͠ͷʁ F(ω) = ∫

    ∞ −∞ f(t)e−iωtdt ϑʔϦΤม׵ͬͯͳʹʁʁʁ ͚ΜΏʔ!LFOZV@ 5XJUUFS  山口大学大学院 博士課程/ 学術研究員/ ཭ࢄϑʔϦΤม׵Ͱ͸ͳ͍Αʂ
 ͜ͷϑʔϦΤม׵͸࿈ଓͷؔ਺ʹؔ͢ΔϑʔϦΤม׵
  35. ෳૉϑʔϦΤڃ਺ ਺ֶͷ͓࿩ ෳૉϑʔϦΤڃ਺ͷ܎਺Λಋग़͢Δ ʮల։ࣜͷ྆ลʹɼӈ͔ΒɹɹɹɹΛ͔͚Δʯˠʮͦͷޙ۠ؒT Ͱੵ෼ʯ f(t) = ⋯ + c−n

    e−i 2πnt T + ⋯ + c−1 e−i 2πt T + c0 + c1 ei 2πt T + ⋯ + cn ei 2πnt T + ⋯ cn ∫ 2 T − 2 T f(t)ei−2πnt T dt = ⋯ + cn−1 ∫ 2 T − 2 T ei 2π(n − 1)t T e−i 2πnt T dt + cn ∫ 2 T − 2 T ei 2πnt T e−i 2πnt T dt + cn+1 ∫ 2 T − 2 T ei 2π(n + 1)t T e−i 2πnt T dt + ⋯ e−i 2πnt T   ͚ͩ͜͜࢒Δ ∫ 2 T − 2 T f(t)e−i 2πnt T dt = cn ∫ 2 T − 2 T ei 2πnt T e−i 2πnt T dt T ʹͳΔ cn = 1 T ∫ 2 T − 2 T f(t)e−i 2πnt T dt ∫ 2 T − 2 T ei 2πm T te−i 2πn T tdt = { 0 (m ≠ n) T (m = n) ʮ௚ަجఈʯͷੑ࣭
  36. ϑʔϦΤม׵ ਺ֶͷ͓࿩ f(t) = ⋯ + c−n e−inω0 t +

    ⋯ + c−1 e−iω0 t + c0 + c1 eiω0 t + ⋯ + cn einω0 t + ⋯ cn = 1 T ∫ 2 T − 2 T f(t)e−inω0 tdt ෳૉϑʔϦΤڃ਺ͷ৔߹ f(t) T ω0 = 2π T ֯प೾਺ ࣌ؒྖҬ प೾਺ྖҬ ֯प೾਺ͷഒ਺ͷ
 ϑʔϦΤ܎਺Λಋग़͢Δ ؔ਺Λෳૉࢦ਺ؔ਺Ͱల։͢Δ einω0 t ɾఆ͕ٛ۠ؒݶఆ  पظؔ਺ F(ω) = ∫ ∞ −∞ f(t)e−iωtdt ΋ͱ΋ͱܾΊ͍ͯͨ֯प೾਺Ͱ͸ͳ͘ɼ ࣌ؒ೾ܗͷؔ਺͔Β௚઀ɼप೾਺৘ใͷؔ਺Λ औΓग़͢ɽ ϑʔϦΤม׵ͷ৔߹ n ൪໨ͷറΓ
 εϖΫτϧ͸ͱͼͱͼ ɾఆ͕ٛ۠ؒແݶ  ඇपظؔ਺ c0 c−1 c−2 c2 c1 c−3 c3 ɾ  ɾ  ɾ
  37. ω0 = 2π T ֯प೾਺ ࣌ ؒ ྖ Ҭ प

    ೾ ਺ ྖ Ҭ n ൪໨ͷറΓ
 εϖΫτϧ͸ͱͼͱͼ f(t) t f(t) T einω0 t 0 ෳૉϑʔϦΤڃ਺ ɾ  ɾ  ɾ F(ω) −∞ +∞ ֯प೾਺͸࿈ଓతͳ஋ɽ ͦͯ͠࿈ଓؔ਺ʹͳΔɽ ϑʔϦΤม׵ eiωt ෳૉϑʔϦΤڃ਺ͱϑʔϦΤม׵ͷҧ͍ c0 c−1 c−2 c2 c1 c−3 c3 ɾ  ɾ  ɾ
  38. ෳૉϑʔϦΤڃ਺ల։͔ΒɼϑʔϦΤม׵΁ ෳૉϑʔϦΤڃ਺ల։ ⋯ ⋯ ω0 2ω0 0 −ω0 −2ω0 nω0

    −nω0 |c0 | |c1 | |c2 | |cn | |c−1 | |c−2 | |c−n | ω f(t) = ∞ ∑ n=−∞ cn eiω0 nt ω0 = 2π T पظؔ਺ͳͷͰɼपظT ͕େࣄͳཁૉͩͬͨ ͦΕʹΑͬͯɼجຊ֯प೾਺ω0 ͕ग़ͯ͘Δ ෳૉϑʔϦΤ܎਺cnʹɼෳૉࢦ਺ؔ਺ Λֻ͚ͨ΋ͷΛ଍͠߹Θͤɼ૯࿨ΛͱΔɽ eiω0 nt cn eiω0 nt ⋯ ⋯ ω0 2ω0 0 −ω0 −2ω0 nω0 −nω0 |c0 | |c1 | |c2 | |cn | |c−1 | |c−2 | |c−n | ω cn eiω0 nt ω0 ω0 cn eiω0 nt ໘ੵ ω0 = 2π T ω0 पظT Λແݶେʿʹʂ ͕ඇৗʹখ͘͞ͳΔ प೾਺εϖΫτϧ͕ ͱͼͱͼͰ͸ͳ͘ɼ࿈ଓʹͳΔ ઢ प೾਺εϖΫτϧ ͷִؒ Λڀۃʹڱ͘͠ɼ໘ੵͱͯ͠ औΓѻ͏Α͏ʹߟ͑Δ ૯࿨Λܭࢉ͢Δ໰୊ˠ໘ੵΛܭࢉ͢Δ໰୊΁
  39. ϑʔϦΤม׵ͷ਺ࣜΛಋग़͢ΔɿٯϑʔϦΤม׵ f(t) = ∞ ∑ n=−∞ cn eiω0 nt ෳૉϑʔϦΤڃ਺ల։͔ΒɼٯϑʔϦΤม׵

    = ∞ ∑ n=−∞ ω0 cn eiω0 nt ω0 = 1 2π ∞ ∑ n=−∞ ω0 2πcn eiω0 nt ω0 = 1 2π ∞ ∑ n=−∞ ω0 2πcn eiω(n)t ω0 = 1 2π ∞ ∑ n=−∞ ω0 F(ω(n))eiω(n)t F(ω(n)) = 2πcn ω0 ω(n) = ω0 n f(t) = 1 2π ∞ ∑ n=−∞ F(ω(n))eiω(n)tΔω T0 → ∞ ͷۃݶΛߟ͑Δ f(t) = 1 2π ∫ ∞ −∞ F(ω)eiωtdω cn eiω0 nt ω0 ω0 cn eiω0 nt ໘ੵ Λ͘͘Γग़͢ 1/2π جຊ֯प೾਺ͷ n ഒͷ஋Λ࣋ͭ ֯प೾਺ प೾਺εϖΫτ ϧΛද͢৽ͨͳ ม਺Λఆٛ Δω = ω0 ͱஔ͖׵͑Δ ω(n) → ω nഒͷ஋Λ࣋ͭ֯प೾਺͕ ࣮਺ω ͷؔ਺ʹͳΔ Δω → dω ແݶখʹͳΔ ٯϑʔϦΤม׵ ޙʑͷϑʔϦΤม׵ͷࣜΛ γϯϓ ϧʹهड़͢ΔͨΊ
  40. ϑʔϦΤม׵ͷ਺ࣜΛಋग़͢ΔɿϑʔϦΤม׵ cn = 1 T ∫ 2 T − 2

    T f(t)e−iω(n)tdt = 2π ω0 1 T ∫ 2 T − 2 T f(t)e−iω(n)tdt F(ω(n)) = 2πcn ω0 ω0 = 2π T = ∫ 2 T − 2 T f(t)e−iω(n)tdt ϑʔϦΤม׵΋ಉ༷ʹಋग़ F(ω) = ∫ ∞ −∞ f(t)e−iωtdt ৽ͨʹఆٛͨ͠प೾਺εϖΫτϧ ෳૉϑʔϦΤ܎਺Λ୅ೖ͢Δ ੵ෼ͷલʹ͋Δ ܎਺Λফڈ ω(n) → ω nഒͷ஋Λ࣋ͭ֯प೾਺͕ ࣮਺ω ͷؔ਺ʹͳΔ T0 → ∞ ͷۃݶΛߟ͑Δ ϑʔϦΤม׵
  41. ࣌ؒྖҬ प೾਺ྖҬ F(ω) = ∫ ∞ −∞ f(t)e−iωtdt f(t) =

    1 2π ∫ ∞ −∞ F(ω)eiωtdω ϑʔϦΤม׵ ٯϑʔϦΤม׵ P e1 e2 O OP = a1 e1 + a2 e2 f(t) eiω1 t eiω2 t ؔ਺ۭؒͷ఺f(t) ͸
 ௚ަجఈͱͳΔؔ਺ ηοτͰల։͞ΕΔ ฏ໘ϕΫτϧ͸ɼ ௚ަ͢Δʮجఈϕ ΫτϧʯͷҰ࣍݁ ߹Ͱද͞ΕΔ F(ω) = ∫ ∞ −∞ f(t)e−iωtdt ࿈ଓ͍ͯ͠Δ ͍͔ͳΔ֯प೾਺΋PL ϑʔϦΤม׵ ਺ֶͷ͓࿩
  42. ࣌ؒྖҬ प೾਺ྖҬ F(ω) = ∫ ∞ −∞ f(t)e−iωtdt ϑʔϦΤม׵ ٯϑʔϦΤม׵

    ϑʔϦΤม׵ͷجఈ eiωt F(ω) = ∫ ∞ −∞ f(t)e−iωtdt ෳૉ਺ͷ಺ੵ͸ɼ ҰํΛڞ໾ͳෳૉ਺ʹֻ͚ͯ͠߹ΘͤΔ ෳૉਖ਼ݭ೾ ϑʔϦΤม׵ ਺ֶͷ͓࿩ f(t) = 1 2π ∫ ∞ −∞ F(ω)eiωtdω
  43. ·ͱΊɿϑʔϦΤڃ਺ల։ͱٯϑʔϦΤม׵ͷಛ௃ f(t) = ∞ ∑ n=−∞ cn eiω0 nt ෳૉϑʔϦΤڃ਺

    c0 c−1 c−2 c2 c1 c−3 c3 einω0 t ɾपظT ͷ࣌ؒ৴߸Λѻ͏ ɾෳૉࢦ਺ؔ਺ͷʮ૯࿨ʯͰදݱ ɾप೾਺੒෼͸ͱͼͱͼ ແݶݸɼ੔਺ഒ ٯϑʔϦΤม׵ f(t) = 1 2π ∫ ∞ −∞ F(ω)eiωtdω F(ω) eiωt ɾपظతͱ͸ݶΒͳ͍࣌ؒ৴߸Λѻ͏ ɾෳૉࢦ਺ؔ਺ͷʮੵ෼ʯͰදݱ ɾप೾਺͸࿈ଓؔ਺ͱͳΔ ࣮਺ ϑʔϦΤڃ਺ల։ʹରԠ͢Δͷ͸ɼٯϑʔϦΤม׵ʂʂ ʮϑʔϦΤม׵ʯ͸ɼʮϑʔϦΤڃ਺ͷ܎਺ʯΛಋग़͢ΔํʹରԠʂʂ F(ω) = ∫ ∞ −∞ f(t)e−iωtdt cn = 1 T ∫ 2 T − 2 T f(t)e−iω0 ntdt
  44. ࿅श໰୊ฤ f(t) = { 0 (t < 0) e−t (0

    ≤ t) [ ◼࣍ͷؔ਺ΛϑʔϦΤม׵ͯ͠ಘΒΕΔؔ਺͸ʁ t f(t) 1 0 ϑʔϦΤղੳɹͦͷ dϑʔϦΤม׵ ࿅श໰୊ ͱ͸d ͚ΜΏʔ!LFOZV@  山口大学大学院 博士課程/ 学術研究員/ f(t) = { 1 (− ϵ 2 ≤ t ≤ ϵ 2 ) 0 (otherwise) f(t) 1 0 − ϵ 2 ϵ 2 ◼࣍ͷؔ਺ΛϑʔϦΤม׵ͯ͠ಘΒΕΔؔ਺͸ʁ ղઆ͸:PVUVCFʹʂ
  45. ϑʔϦΤղੳɹͦͷ d཭ࢄϑʔϦΤม׵ %'5 ͱ͸d ◼σ Οδλϧ৴߸ ཭ࢄ৴߸ ͷϑʔϦΤม׵ x(t) x(t)

    0 D 2D 3D 4D t t ཭ࢄ৴߸ D αϯϓϦϯάपظ T = ND ͚ΜΏʔ!LFOZV@ 5XJUUFS  山口大学大学院 博士課程/ 学術研究員/
  46. ཭ࢄϑʔϦΤม׵%'5 ࣮ࡍʹݱ৔Ͱ࢖͏͓࿩ ࣮ݧͳͲͰηϯγϯάͨ͠஋ʹ͸ɼ཭ࢄϑʔϦΤม׵Λ࢖͏ʂ w w w w w w w

    w ϑʔϦΤม׵͸ؔ਺ʹରͯ͠࢖͏΋ͷ ਺ֶ w w w w w w x(t) x(t) 0 D 2D 3D 4D ϑʔϦΤม׵Ͱٞ࿦͍ͯͨ͠
 ؔ਺͸࿈ଓత ࣮ݧσʔλ͸ҰఆִؒͰ ਺஋Խ͞ΕͨσʔλʹͳΔ t t ཭ࢄ৴߸ D αϯϓϦϯάपظ T = ND ཭ࢄϑʔϦΤม׵͸ɼ༗ݶͷ࣌ؒT Λѻ͏ͷͰɼ
 Ͳ͔ͬͪͱ͍͏ͱෳૉϑʔϦΤڃ਺ʹ͍ۙͧʂ ཭ࢄ৴߸͸
 ੵ෼Ͱ͖Δͷʂʁ
  47. ৴߸ॲཧ "%ม׵ "OBMPHUPEJHJUBMDPOWFSTJPO ࢦઌ຺೾ηϯαʔ t t τ t t ඪຊԽ

    αϯϓϦϯά ྔࢠԽ αϯϓϦϯάִؒ 0000 0001 0010 0011 0100 0101 0111 0110 1000 Ξφϩά৴߸ σ Οδλϧ৴߸ (0011,0100,0110,1000,0011,0011,0011,0101,0111,0100,0011,⋯) Ξφϩά৴߸ ɹ࣌ؒతʹ࿈ଓͰมԽ͢Δ৴߸ σΟδλϧ৴߸ ෆ࿈ଓͳσʔλͷू߹  ɹҰఆִ࣌ؒؒͷͱͼͱͼͷ஋Ͱදݱ ͨ͠৴߸ ܭଌػثͷεϖοΫ ͬͯେࣄͳͷͰ͢ Ϗοτɿਐ਺ͷܻͷ୯Ґ
  48. ߴ଎ϑʔϦΤม׵''5 φΠΩετͷඪຊԽఆཧ ͋Δਖ਼ݭ೾ΛඪຊԽ͢Δࡍʹ͸ɼͦͷपظͷ൒෼ΑΓ΋୹͍ඪຊԽִؒΛ༻͍ͳ͚Ε͹ͳΒͳ͍ पظT पظͷ ൒෼T/2 ඪຊԽִؒ
 αϯϓϦϯάִؒ τ T

    τ T τ T τ [ τ < T 2 τ = T T 2 < τ < T τ = T 2 ௚ઢʹͳΔ पظ͕େ͖͍೾͕ ؒҧͬͯग़ͯ͘Δ ྵ఺͹͔Γͩͱ ௚ઢ͕ग़ͯ͘Δ ඪຊԽ఺਺Λ௨ա͢Δ೾ͷ͏ͪͰ ࠷΋Ώͬ͘Γͱͨ͠೾ͱͯ͠ɼݸ ͚ͩਖ਼͘͠࠶ݱͰ͖Δ
  49. ཭ࢄϑʔϦΤม׵%'5 ࣮ࡍʹݱ৔Ͱ࢖͏͓࿩ x(t) t ࣌ؒྖҬ प೾਺ྖҬ F(ω) = ∫ ∞

    −∞ x(t)e−iωtdt x(t) 0 D 2D 3D 4D t ཭ࢄ৴߸ D αϯϓϦϯάपظ T = ND ω F(ω) ω F(ω) ৗʹ ͱͼͱͼͷ৴߸ͳͷͰ ੵ෼ ੵ෼ ཭ࢄ৴߸ʹؔͯ͠͸޻෉͕ඞཁ ཭ࢄϑʔϦΤม׵͸ੵ෼Ͱ͖ͳ͍ʂʁ w w w w w w w w
  50. x(t) 0 D 2D 3D 4D t T = 4D

    ཭ࢄϑʔϦΤม׵%'5 ࣮ࡍʹݱ৔Ͱ࢖͏͓࿩ 0 ≤ t < T ཭ࢄϑʔϦΤม׵Ͱप೾਺ྖҬʹ΋͍ͬͯ͘޻෉ ༗ݶ۠ؒͰղੳ T͸ؚ·ͳ͍ x(t) = ⋯ + c−n ei 2π T (−nt) + ⋯ + c−1 ei 2π T (−t) + c0 + c1 ei 2π T (nt) + ⋯ + cn ei 2π T (+nt) + ⋯ x0 x1 x2 x3 x(t) = c0 1 + c1 ei 2π 4D (1t) + c2 ei 2π 4D (2t) + c3 ei 2π 4D (3t) ͭͷෳૉਖ਼ݭ೾͚ͩ࢖༻Ͱ͖Ε͹ྑ͍ ͜Ε͕ͭͷ཭ࢄ৴߸ͷ཭ࢄϑʔϦΤม׵ͷجຊͷࣜʹͳΓ·͢ ཭ࢄ৴߸ c(t) = N ∑ n=0 x(t)ei 2π T (nt)
  51. x(t) 1 ei 2π 4D (nt) ؔ਺ۭؒͷ఺x(t) ͸ɼ௚ަ ͢Δͭͷෳૉਖ਼ݭ೾ͷҰ࣍ ݁߹Ͱද͞ΕΔ͜ͱʹͳΔ

    ཭ࢄϑʔϦΤม׵%'5 ࣮ࡍʹݱ৔Ͱ࢖͏͓࿩ x(t) 0 D 2D 3D 4D t T = 4D x0 x1 x2 x3 x(t) = c0 1 + c1 ei 2π 4D (1t) + c2 ei 2π 4D (2t) + c3 ei 2π 4D (3t) ෳૉϑʔϦΤڃ਺ͱಉͩ͡Ͷʂ ཭ࢄ৴߸ ཭ࢄ৴߸x0 ~ x3 ͔Βɼप೾਺৘ใc0 ~ c3 ͕ಘΒΕΔ ల։͞Ε֤߲ͨ ෳૉਖ਼ݭ೾ ͸΋ͪΖΜ௚ަ͍ͯ͠Δ
  52. ཭ࢄϑʔϦΤม׵%'5 ࣮ࡍʹݱ৔Ͱ࢖͏͓࿩ ཭ࢄ৴߸x0 ~ x3 ͔Βɼप೾਺৘ใc0 ~ c3 ͕ಘΒΕΔ x(D)

    = c0 + c1 ei 2π 4 + c2 ei 4π 4 + c3 ei 6π 4 t ΁0, D, 2D, 3D Λ୅ೖͯ͠ɼ࿈ཱํఔࣜΛཱͯΔ x(0) = c0 + c1 + c2 + c3 x(t) = c0 1 + c1 ei 2π 4D (1t) + c2 ei 2π 4D (2t) + c3 ei 2π 4D (3t) x(2D) = c0 + c1 ei 4π 4 + c2 ei 8π 4 + c3 ei 12π 4 x(3D) = c0 + c1 ei 6π 4 + c2 ei 12π 4 + c3 ei 18π 4 Ҏ্ͷ࿈ཱํఔࣜΛղ͍ͯɼ཭ࢄ৴߸x0 ~ x3 ͔Βɼ प೾਺৘ใc0 ~ c3 ͷؔ܎Λಋग़͢Δ
  53. ཭ࢄϑʔϦΤม׵%'5 ࣮ࡍʹݱ৔Ͱ࢖͏͓࿩ x0 x1 x2 x3 = 1 1 1

    1 1 ei 2π 4 ei 4π 4 ei 6π 4 1 ei 4π 4 ei π 4 ei 12π 4 1 ei 6π 4 ei 12π 4 ei 18π 4 c0 c1 c2 c3 x(D) = c0 + c1 ei 2π 4 + c2 ei 4π 4 + c3 ei 6π 4 x(0) = c0 + c1 + c2 + c3 x(2D) = c0 + c1 ei 4π 4 + c2 ei 8π 4 + c3 ei 12π 4 x(3D) = c0 + c1 ei 6π 4 + c2 ei 12π 4 + c3 ei 18π 4 Ҏ্ͷ࿈ཱํఔࣜΛղ͍ͯɼ཭ࢄ৴߸x0 ~ x3 ͔Βɼ प೾਺৘ใc0 ~ c3 ͷؔ܎Λಋग़͢Δ ߦྻܗࣜʹมߋ ֤ߦϕΫτϧ͸΋ͪΖΜ௚ަ͍ͯ͠Δ
  54. ཭ࢄϑʔϦΤม׵%'5 ࣮ࡍʹݱ৔Ͱ࢖͏͓࿩ x0 x1 x2 x3 = 1 1 1

    1 1 ei 2π 4 ei 4π 4 ei 6π 4 1 ei 4π 4 ei π 4 ei 12π 4 1 ei 6π 4 ei 12π 4 ei 18π 4 c0 c1 c2 c3 1 1 1 1 1 e−i 2π 4 e−i 4π 4 e−i 6π 4 1 e−i 4π 4 e−i π 4 e−i 12π 4 1 e−i 6π 4 e−i 12π 4 e−i 18π 4 x0 x1 x2 x3 = 1 1 1 1 1 e−i 2π 4 e−i 4π 4 e−i 6π 4 1 e−i 4π 4 e−i π 4 e−i 12π 4 1 e−i 6π 4 e−i 12π 4 e−i 18π 4 1 1 1 1 1 ei 2π 4 ei 4π 4 ei 6π 4 1 ei 4π 4 ei π 4 ei 12π 4 1 ei 6π 4 ei 12π 4 ei 18π 4 c0 c1 c2 c3 ӈลͷਖ਼ํߦྻͷ֤੒෼Λڞ໾ͳෳૉ਺ʹͯ͠సஔͨ͠ߦྻΛ྆ลʹ͔͚Δ 4 =
  55. ཭ࢄϑʔϦΤม׵%'5 ࣮ࡍʹݱ৔Ͱ࢖͏͓࿩ ཭ࢄ৴߸͕ͭͷ৔߹ͷ཭ࢄϑʔϦΤม׵ͷެࣜ 4 c0 c1 c2 c3 = 1

    1 1 1 1 e−i 2π 4 e−i 4π 4 e−i 6π 4 1 e−i 4π 4 e−i π 4 e−i 12π 4 1 e−i 6π 4 e−i 12π 4 e−i 18π 4 x0 x1 x2 x3 4 c0 c1 c2 c3 = X0 X1 X2 X3 X0 X1 X2 X3 = 1 1 1 1 1 e−i 2π 4 e−i 4π 4 e−i 6π 4 1 e−i 4π 4 e−i π 4 e−i 12π 4 1 e−i 6π 4 e−i 12π 4 e−i 18π 4 x0 x1 x2 x3 ཧ࿦ల։͸ϑʔϦΤڃ਺ͱಉ͡Ͱ͋Δ
  56. ཭ࢄϑʔϦΤม׵%'5 ࣮ࡍʹݱ৔Ͱ࢖͏͓࿩ 1 1 1 1 1 e−i 2π 4

    e−i 4π 4 e−i 6π 4 1 e−i 4π 4 e−i π 4 e−i 12π 4 1 e−i 6π 4 e−i 12π 4 e−i 18π 4 x0 x1 x2 x3 = 4 c0 c1 c2 c3 4 c0 c1 c2 c3 = X0 X1 X2 X3 x0 x1 x2 x3 = 1 1 1 1 1 ei 2π 4 ei 4π 4 ei 6π 4 1 ei 4π 4 ei π 4 ei 12π 4 1 ei 6π 4 ei 12π 4 ei 18π 4 c0 c1 c2 c3 c0 c1 c2 c3 = 1 4 X0 X1 X2 X3 ݩʑͷࣜʹ୅ೖ͢Δ ஔ͖׵͑ ٯ཭ࢄϑʔϦΤม׵ͷಋग़ x0 x1 x2 x3 = 1 4 1 1 1 1 1 ei 2π 4 ei 4π 4 ei 6π 4 1 ei 4π 4 ei π 4 ei 12π 4 1 ei 6π 4 ei 12π 4 ei 18π 4 X0 X1 X2 X3 ٯ཭ࢄϑʔϦΤม׵΋݁ہ͸ɼ ཭ࢄϑʔϦΤม׵ͱಉ͡ʂ
  57. ཭ࢄϑʔϦΤม׵%'5 ࣮ࡍʹݱ৔Ͱ࢖͏͓࿩ X0 X1 X2 X3 = 1 1 1

    1 1 e−i 2π 4 e−i 4π 4 e−i 6π 4 1 e−i 4π 4 e−i π 4 e−i 12π 4 1 e−i 6π 4 e−i 12π 4 e−i 18π 4 x0 x1 x2 x3 X0 X1 X2 X3 = 1 1 1 1 1 −i −1 i 1 −1 1 −1 1 i −1 −i x0 x1 x2 x3 ΦΠϥʔͷެࣜ eiθ = cos θ + i sin θ e−iθ = cos θ − i sin θ e−i π 2 = cos π 2 − i sin π 2 e−i π 2 = − i   e−i π 2 = − i ei π 2 = i eiπ = 1 e−iπ = − 1 ͜ͷਖ਼ํߦྻʹ͸͋Δنଇੑ͕͋Δ ͜ͷنଇੑΛ্ख͘ར༻ͨ͠ͷ͕ʮߴ଎ϑʔϦΤม׵ FFT ʯ
  58. ߴ଎ϑʔϦΤม׵''5΁ͷ༠͍ɽɽɽ X0 X1 X2 X3 = 1 1 1 1

    1 −i −1 i 1 −1 1 −1 1 i −1 −i x0 x1 x2 x3 ◼ΦΠϥʔͷެࣜʹΑΓॻ͖௚͢ ΦΠϥʔͷެࣜ eiθ = cos θ + i sin θ e−iθ = cos θ − i sin θ e−i π 2 = − i ei π 2 = i eiπ = 1 e−iπ = − 1 X0 X2 X1 X3 = 1 1 1 1 1 −1 1 −1 1 −i −1 i 1 i −1 −i x0 x1 x2 x3 ߦ໨ͱߦ໨ΛೖΕସ͑Δ E1 = [ 1 1 1 −i] E2 = [ 1 −i 1 i ] −E2 [ E1 E1 E2 −E2 ] %'5ͷม׵ߦྻ͕ ؆୯ʹද͞ΕΔ ͜ͷΑ͏ͳײ͡Ͱɽɽɽ
  59. ϑʔϦΤղੳɹͦͷ d཭ࢄϑʔϦΤม׵ ࿅श໰୊ ͱ͸d ࿅श໰୊ฤ ◼཭ࢄ৴߸\x0, x1, x2, x3 ^͕\1,

    1, 0, 0^ͷͱ͖ɼ཭ࢄϑʔϦΤม׵ %'5 ͷ ͷ܎਺X0 ~ X3 ΛٻΊΑɽ ͚ΜΏʔ!LFOZV@ 5XJUUFS  山口大学大学院 博士課程/ 学術研究員/
  60. ϑʔϦΤղੳɹͦͷ dߴ଎ϑʔϦΤม׵ ''5 ͱ͸d ◼ߴ଎ϑʔϦΤม׵''5ͱ͸ɼ཭ࢄϑʔϦΤม׵%'5Λߴ଎ʹ͢Δ΋ͷʂ X0 X1 X2 X3 =

    1 1 1 1 1 e−i 2π 4 e−i 4π 4 e−i 6π 4 1 e−i 4π 4 e−i π 4 e−i 12π 4 1 e−i 6π 4 e−i 12π 4 e−i 18π 4 x0 x1 x2 x3 %'5ͷม׵ߦྻ प೾਺৘ใΛಘΔ 㲔 ཭ࢄ৴߸Λೖྗ ͜ͷਖ਼ํߦྻʹ͸͋Δنଇੑ͕͋Δ ͜ͷنଇੑΛ্ख͘ར༻ͨ͠ͷ͕ʮߴ଎ϑʔϦΤม׵ FFT ʯ ͚ΜΏʔ!LFOZV@ 5XJUUFS  山口大学大学院 博士課程/ 学術研究員/
  61. ཭ࢄϑʔϦΤม׵%'5ͷ͓͞Β͍ X0 X1 X2 ⋮ XN−1 = 1 1 1

    ⋯ 1 1 e−i 2π N e−i 4π N ⋯ e−i 2π(N − 1) N 1 e−i 4π N e−i 8π N ⋯ e−i 4π(N − 1) N ⋮ ⋮ ⋮ ⋱ ⋮ 1 e−i 2π(N − 1) N e−i 4π(N − 1) N ⋯ e−i 2π(N − 1)(N − 1) N x0 x1 x2 ⋮ xN−1 X0 X1 X2 X3 = 1 1 1 1 1 e−i 2π 4 e−i 4π 4 e−i 6π 4 1 e−i 4π 4 e−i π 4 e−i 12π 4 1 e−i 6π 4 e−i 12π 4 e−i 18π 4 x0 x1 x2 x3 %'5ͱ͸Nݸͷσʔλ\x0, x1, x2,ɾɾɾ, xN-1 ^ͱɼͦͷσʔλ௕ʹରԠ͢Δ ෳૉਖ਼ݭ೾ͷ܎਺\X0, X1, X2,ɾɾɾ, XN-1 ^Λ݁ͼ͚ͭΔม׵ Nʹ4ͷͱ͖ ҰൠԽ͢Δ ม׵ߦྻ x0 x1 x2 ⋯ xn−1 t ⋯ Nݸ X0 X1 X2 ⋯ Xn−1 ω ⋯ ม׵ߦྻ Nݸͷ཭ࢄ৴߸ͷσʔλΛ ॲཧ͢Δʹ͸ɼN2 ճͷෳૉ ਺ͷੵͷܭࢉ͕ඞཁʹͳΔ N2ճͷܭࢉճ਺Λେ෯ʹݮগͤ͞Δ޻෉͕͋Δˠ''5
  62. ߴ଎ϑʔϦΤม׵''5 X0 X1 X2 ⋮ XN−1 = 1 1 1

    ⋯ 1 1 e−i 2π N e−i 4π N ⋯ e−i 2π(N − 1) N 1 e−i 4π N e−i 8π N ⋯ e−i 4π(N − 1) N ⋮ ⋮ ⋮ ⋱ ⋮ 1 e−i 2π(N − 1) N e−i 4π(N − 1) N ⋯ e−i 2π(N − 1)(N − 1) N x0 x1 x2 ⋮ xN−1 ߴ଎ϑʔϦΤม׵''5ͷ֓ཁ ม׵ߦྻ N2ճͷܭࢉճ਺Λେ෯ʹݮগͤ͞Δ޻෉͕͋Δˠ''5 ܭࢉͷॱংΛม͑ͯɼಉྨͷখ͞ͳܭࢉʹখ෼͚͢Δ N2 → N 2 (log2 N − 1) ۩ମతͳ৐ࢉ ֻ͚ࢉ ճ਺ͷ஋ ʻྫ͑͹ʼ N = 210 = 1024 N2 = 1024 × 1024 ≒ 1000000 N 2 (log2 N − 1) = 512 log2 210 − 1 ≒ 4600 %'5 ''5 ɾ೥ʹ$PPMFZͱ5VLFZ͕޿Ίͨɽ ɾʮप೾਺ؒҾ͖ܕ''5ʯͱʮ࣌ؒؒҾ͖ܕ''5ʯͷλΠϓ͕͋Δɽ ɾʮप೾਺ؒҾ͖ܕ''5ʯ͸ϑʔϦΤม׵ޙͷ஋Λฒ΂ସ͑Δɽ ɾʮ࣌ؒؒҾ͖ܕ''5ʯ͸ϑʔϦΤม׵લͷ࣌ؒσʔλΛฒͼସ͑Δ ''5ͷσʔλ਺͸ɼͷ΂͖৐ʹͳΔ
  63. ߴ଎ϑʔϦΤม׵''5 X0 X1 X2 ⋮ XN−1 = 1 1 1

    ⋯ 1 1 e−i 2π N e−i 4π N ⋯ e−i 2π(N − 1) N 1 e−i 4π N e−i 8π N ⋯ e−i 4π(N − 1) N ⋮ ⋮ ⋮ ⋱ ⋮ 1 e−i 2π(N − 1) N e−i 4π(N − 1) N ⋯ e−i 2π(N − 1)(N − 1) N x0 x1 x2 ⋮ xN−1 ճసҼࢠΛಋೖͯ͠ɼࣜΛݟ΍͘͢͢Δ WN = e−i 2π N WN X0 X1 X2 ⋮ XN−1 = 1 1 1 ⋯ 1 1 WN W2 N ⋯ WN−1 N 1 W2 N W4 N ⋯ W2(N−1) N ⋮ ⋮ ⋮ ⋱ ⋮ 1 W(N−1) N W2(N−1) N ⋯ W(N−1)(N−1) N x0 x1 x2 ⋮ xN−1 ෳૉࢦ਺ؔ਺ͷ΂͖৐͕ෳૉฏ໘৐Ͱ͸ճసΛ͢Δ WN = e−i 2π N W8 = e−i 2π 8 W0 8 = (e−i 2π 8 )0 = 1 W1 8 = e−i 2π 8 = 1 2 − i 1 2 e−iθ = cos θ − i sin θ W2 8 W3 8 W4 8 W5 8 W6 8 W7 8 Re Im W0 8 = W8 8 = W16 8 = ⋯ W1 8 = W9 8 = W17 8 = ⋯ Nʹ8ͷͱ͖ ճసҼࢠͰهड़͢Δ͜ͱʹΑͬͯɼ ܭࢉΛ࡟ݮ͢ΔͨΊͷ޻෉͕Ͱ͖Δɽ
  64. ߴ଎ϑʔϦΤม׵''5 N = 2 ͷႈʹै͏σʔλ਺ͱγάφϧϑϩʔਤͷؔ܎ N = 4 ( X0

    X1 ) = ( 1 1 1 W2 ) ( x0 x1 ) W2 = e−i 2π 2 = e−iπ = − 1 W0 2 = W2 2 = W4 2 = 0 W1 2 = W3 2 = W5 2 = − 1 Re Im X0 X1 X2 X3 = 1 1 1 1 1 W1 4 W2 4 W3 4 1 W2 4 W4 4 W6 4 1 W3 4 W6 4 W9 4 x0 x1 x2 x3 W4 = e−i 2π 4 = e−i π 2 = − i Re Im W0 4 = W4 4 = W8 4 = 1 W1 4 = W5 4 = W9 4 = − i W2 4 = W6 4 = − 1 W3 4 = i N = 8 W8 = e−i 2π 8 = e−i π 4 = + 1 2 − 1 2 i X0 X1 X2 ⋮ X7 = 1 1 1 ⋯ 1 1 W8 W2 8 ⋯ W7 8 1 W2 8 W4 8 ⋯ W14 8 ⋮ ⋮ ⋮ ⋱ ⋮ 1 W7 8 W14 8 ⋯ W49 8 x0 x1 x2 ⋮ x7 W0 8 = (e−i 2π 8 )0 = 1 W1 8 = e−i 2π 8 = 1 2 − i 1 2 W2 8 W3 8 W4 8 W5 8 W6 8 W7 8 Re Im
  65. ߴ଎ϑʔϦΤม׵''5 όλϑϥΠԋࢉͱγάφϧϑϩʔਤ a b a + b a − b

    − ''5ͷܭࢉ͸ɼͭͷσʔλΛՃݮ͠ɼ͞ΒʹճసҼࢠͷk ৐Λ͔͚Δͱ͍͏جຊԋࢉ WN = e−i 2π N a b a + b Wk N (a − b) − Wk N ௏ͷӋͷܗʹࣅ͍ͯΔͷͰɼ όλϑϥΠԋࢉ ͜ͷԋࢉͷਤ͸ γάφϧϑϩʔਤ ਤ" ਤ# ͭͷσʔλa bΛೖྗͨ͠ͱ͖ɼ ͭͷ࿨ΛҰํʹɼͭͷࠩΛଞํʹग़ྗ ͭͷσʔλa bΛೖྗͨ͠ͱ͖ɼ ͭͷ࿨ΛҰํʹɼͭͷࠩʹճసҼࢠΛ ͔͚ͨ஋Λଞํʹग़ྗ ͞Βʹɼ''5ͷܭࢉ͸ʮϏοτϦόʔεʯͱ͍͏ɼॱংʹσʔλΛฒ΂ସ͑Δૢ࡞Λ͢Δ
  66. ߴ଎ϑʔϦΤม׵''5 όλϑϥΠԋࢉͷྫ N = 2 ( X0 X1 ) =

    ( 1 1 1 W1 2 ) ( x0 x1 ) σʔλ਺N = 21 ճసҼࢠ͸ɼN = 1ͳͷͰ͜͏ͳΓ·͢ WN = e−i 2π N W2 = e−i 2π 2 W0 2 = W2 2 = 1 e−iθ = cos θ − i sin θ W1 2 = W3 2 = − 1 Re Im Nʹ2ͷͱ͖ ( = e−iπ = − 1) X0 = (x0 + x1 ) X1 = (x0 − x1 ) ( X0 X1 ) = ( 1 1 1 −1) ( x0 x1 ) x0 x1 x0 + x1 = X0 x0 − x1 = X1 − x0 x1 X0 X1 W2 γάφϧϑϩʔਤ ্ͷγάφϧϑϩʔਤͷॲཧ Λ͜ͷΑ͏ʹॻ͍͓ͯ͘
  67. ߴ଎ϑʔϦΤม׵''5 N = 4 X0 X1 X2 X3 = 1

    1 1 1 1 W1 N W2 N W3 N 1 W2 N W4 N W6 N 1 W3 N W6 N W9 N x0 x1 x2 x3 σʔλ਺N = 22 ճసҼࢠ͸ɼN = 4ͳͷͰ͜͏ͳΓ·͢ WN = e−i 2π N W4 = e−i 2π 4 W0 4 = W4 4 = W8 4 = 1 e−iθ = cos θ − i sin θ W1 4 = W5 4 = W9 4 = − i W2 4 = W6 4 = − 1 W3 4 = i Re Im Nʹ4ͷͱ͖ ( = e−i π 2 = − i) X0 X1 X2 X3 = 1 1 1 1 1 W1 N −1 W3 N 1 −1 1 −1 1 W3 N −1 W1 N x0 x1 x2 x3 ͱΓ͋͑ͣɼ࣮෦Λ୅ೖ όλϑϥΠԋࢉͷྫ
  68. ߴ଎ϑʔϦΤม׵''5 ஋ ਐ਺ ٯస ϏοτϦόʔε     

               X0 X2 X1 X3 = 1 1 1 1 1 −1 1 −1 1 W1 N −1 W3 N 1 W3 N −1 W1 N x0 x1 x2 x3 ஋ͷ਺Λਐ਺ʹͯ͠ɼ ͦͷͱΛશͯ൓స͞ ͤͨ΋ͷ 㲔 प೾਺৘ใΛ΋ͱʹϏοτϦόʔεΛߦͳͬͯɼࣜมܗΛߦ͏ 㲔 㲔 㲔 X0 X1 X2 X3 = 1 1 1 1 1 W1 N −1 W3 N 1 −1 1 −1 1 W3 N −1 W1 N x0 x1 x2 x3 ϑʔϦΤม׵લͷૢ࡞ N = 4
  69. ߴ଎ϑʔϦΤม׵''5 X0 X2 X1 X3 = 1 1 1 1

    1 −1 1 −1 1 W1 N −1 W3 N 1 W3 N −1 W1 N x0 x1 x2 x3 㲔 X0 = x0 + x1 + x2 + x3 X2 = x0 − x1 + x2 − x3 X1 = x0 + x1 W1 4 − x2 + x3 W3 4 X3 = x0 + x1 W3 4 − x2 + x3 W1 4 όλϑϥΠԋࢉͱࣅͯͳ͍ʁ X0 = (x0 + x2 ) + (x1 + x3 ) X2 = (x0 + x2 ) − (x1 + x3 ) X1 = (x0 − x2 ) + W1 4 (x1 + x3 W2 4 ) = W0 4 (x0 − x2 ) + W1 4 (x1 − x3 ) X3 = (x0 − x2 ) + W1 4 (x1 W2 4 + x3 ) = W0 4 (x0 − x2 ) − W1 4 (x1 − x3 ) N = 4 N = 2 ͷ࣌ͷ
  70. ߴ଎ϑʔϦΤม׵''5 X0 = (x0 + x2 ) + (x1 +

    x3 ) X2 = (x0 + x2 ) − (x1 + x3 ) X1 = (x0 − x2 ) + W1 4 (x1 + x3 W2 4 ) = W0 4 (x0 − x2 ) + W1 4 (x1 − x3 ) X3 = (x0 − x2 ) + W1 4 (x1 W2 4 + x3 ) = W0 4 (x0 − x2 ) − W1 4 (x1 − x3 ) (x0 + x2 ) − (x1 + x3 ) (x0 + x2 ) + (x1 + x3 ) = X0 (x0 + x2 ) − (x1 + x3 ) = X2 W0 4 (x0 − x2 ) − W1 4 (x1 − x3 ) W0 4 (x0 + x2 ) + W1 4 (x1 − x3 ) = X1 W0 4 (x0 + x2 ) − W1 4 (x1 − x3 ) = X3 W2 W2 N = 4
  71. ߴ଎ϑʔϦΤม׵''5 (x0 + x2 ) − (x1 + x3 )

    (x0 + x2 ) + (x1 + x3 ) = X0 (x0 + x2 ) − (x1 + x3 ) = X2 W0 4 (x0 − x2 ) − W1 4 (x1 − x3 ) W0 4 (x0 + x2 ) + W1 4 (x1 − x3 ) = X1 W0 4 (x0 + x2 ) − W1 4 (x1 − x3 ) = X3 W2 W2 N = 4 x0 x1 X0 X1 W4 x2 x3 X2 X3 x0 − (x0 + x2 ) (x1 + x3 ) − W0 4 (x0 − x2 ) W1 4 (x1 − x3 ) x1 x2 x3 W0 4 W1 4 − X0 X2 W2 − X1 X3 W2 N = 2ͷγάφϧϑϩʔਤ ͕಺ଆʹ͋Δ
  72. ߴ଎ϑʔϦΤม׵''5 ϏοτϦόʔε N = 8 σʔλ਺N = 23 ઌʹγάφϧϑϩʔਤ͔Β −

    − − X1 X5 − X3 X7 − − W0 4 W1 4 − X0 X4 − X2 X6 W2 x4 x5 x6 x7 x0 x1 x2 x3 W4 W4 W2 W8 W0 4 W1 4 W2 W2 ϏοτϦόʔε σʔλ਺͕
 N = 22 ͷ࣌ͷॲཧ σʔλ਺͕
 N = 2ͷ࣌ͷॲཧ − − − − W0 8 W1 8 W2 8 W3 8
  73. ߴ଎ϑʔϦΤม׵''5 N = 8 X0 X1 X2 ⋮ X7 =

    1 1 1 ⋯ 1 1 W8 W2 8 ⋯ W7 8 1 W2 8 W4 8 ⋯ W14 8 ⋮ ⋮ ⋮ ⋱ ⋮ 1 W7 8 W14 8 ⋯ W49 8 x0 x1 x2 ⋮ x7 %'5ͷม׵ࣜ W0 8 = (e−i 2π 8 )0 = 1 W1 8 = e−i 2π 8 = 1 2 − i 1 2 W2 8 W3 8 W4 8 W5 8 W6 8 W7 8 Re Im W8 = e−i 2π 8 = 1 2 − i 1 2 ճసҼࢠ ஋ ਐ਺ ٯస ϏοτϦόʔε                                 㲔 㲔 Xn ɹ͸Ϗοτ Ϧόʔεॱ X0 = x0 + x1 + x2 + x3 + x4 + x5 + x6 + x7 X4 = x0 − x1 + x2 − x3 + x4 − x5 + x6 − x7 X2 = x0 + x1 W2 8 − x2 − x3 W2 8 + x4 + x5 W2 8 − x6 − x7 W2 8 X6 = x0 − x1 W2 8 − x2 + x3 W2 8 + x4 − x5 W2 8 − x6 + x7 W2 8 X1 = x0 + x1 W8 + x2 W2 8 + x3 W3 8 − x4 − x5 W8 − x6 W2 8 − x7 W3 8 X5 = x0 − x1 W8 + x2 W2 8 − x3 W3 8 − x4 + x5 W8 − x6 W2 8 + x7 W3 8 X3 = x0 + x1 W3 8 − x2 W2 8 − x3 W5 8 − x4 − x5 W3 8 + x6 W2 8 + x7 W5 8 X7 = x0 − x1 W3 8 − x2 W2 8 + x3 W5 8 − x4 + x5 W3 8 + x6 W2 8 − x7 W5 8 Re Im W0 4 = 1 W1 4 = − i W2 4 = − 1 W3 4 = i W4 = e−i 2π 4 = − i W0 4 = W0 8 W1 4 = W2 8 Λ࢖ͬͯࣜมܗ
  74. ߴ଎ϑʔϦΤม׵''5 X0 = x0 + x1 + x2 + x3

    + x4 + x5 + x6 + x7 X4 = x0 − x1 + x2 − x3 + x4 − x5 + x6 − x7 X2 = x0 + x1 W2 8 − x2 − x3 W2 8 + x4 + x5 W2 8 − x6 − x7 W2 8 X6 = x0 − x1 W2 8 − x2 + x3 W2 8 + x4 − x5 W2 8 − x6 + x7 W2 8 X1 = x0 + x1 W8 + x2 W2 8 + x3 W3 8 − x4 − x5 W8 − x6 W2 8 − x7 W3 8 X5 = x0 − x1 W8 + x2 W2 8 − x3 W3 8 − x4 + x5 W8 − x6 W2 8 + x7 W3 8 X3 = x0 + x1 W3 8 − x2 W2 8 − x3 W5 8 − x4 − x5 W3 8 + x6 W2 8 + x7 W5 8 X7 = x0 − x1 W3 8 − x2 W2 8 + x3 W5 8 − x4 + x5 W3 8 + x6 W2 8 − x7 W5 8 N = 8 N = 4 ͕ग़ͯ͘ΔΑ͏ʹมߋ͢Δ X0 = {(x0 + x4 ) + (x2 + x6 )} + {(x1 + x5 ) + (x3 + x7 )} X4 = {(x0 + x4 ) + (x2 + x6 )} − {(x1 + x5 ) + (x3 + x7 )} X2 = W0 4 {(x0 + x4 ) − (x2 + x6 )} + W1 4 {(x1 + x5 ) − (x3 + x7 )} X6 = W0 4 {(x0 + x4 ) − (x2 + x6 )} − W1 4 {(x1 + x5 ) − (x3 + x7 )} X1 = {W0 8 (x0 − x4 ) + W2 8 (x2 − x6 )} + {W1 8 (x1 − x5 ) + W3 8 (x3 − x7 )} X5 = {W0 8 (x0 − x4 ) + W2 8 (x2 − x6 )} − {W1 8 (x1 − x5 ) + W3 8 (x3 − x7 )} X3 = W0 4 {(W0 8 x0 − x4 ) − W2 8 (x2 − x6 )} + W1 4 {W1 8 (x1 − x5 ) − W3 8 (x3 − x7 )} X7 = W0 4 {(W0 8 x0 − x4 ) − W2 8 (x2 − x6 )} − W1 4 {W1 8 (x1 − x5 ) − W3 8 (x3 − x7 )} − − − X1 X5 − X3 X7 − − W0 4 W1 4 − X0 X4 − X2 X6 W2 x4 x5 x6 x7 x0 x1 x2 x3 W4 W4 W2 W8 W0 4 W1 4 W2 W2 (x0 + x4 ) (x1 + x5 ) (x2 + x6 ) (x3 + x7 ) W0 8 (x0 − x4 ) W1 8 (x1 − x5 ) W2 8 (x2 − x6 ) W3 8 (x3 − x7 ) W0 8 W1 8 W2 8 W3 8 − − − − N/2ͷॲஔʹʂ
  75. ߴ଎ϑʔϦΤม׵''5 ''5ͷҰൠԽΛ͢Δ ̍ɽ্൒෼͔ΒɼԼ൒෼ʹࣼΊઢΛ ̎ɽԼ൒෼͔Βɼ্൒෼΋ಉ༷ʹ ̏ɽ্൒෼͸࿨ԋࢉ ̐ɽԼ൒෼͸ࠩԋࢉ͠ɼճసࢠΛఴ෇ ̑ɽγάφϧϑϩʔਤʹैͬͯܭࢉ xN 2 xN

    2 +1 x0 x1 x2 x3 xN 2 +2 xN 2 +3 N 2 N 2 ⋯ ⋯ ⋯ ⋯ − − − − W0 N W1 N W2 N W3 N ্൒෼ͱԼ൒෼ͷܭࢉ݁ՌΛͦΕͧΕ /ݸͷ཭ࢄ৴߸ͷͨΊͷ''5ॲཧʹ Ҿ͖౉͢ ݩʑͷσʔλ਺͸ͷ΂͖৐ͳͷͰɼ Ҏ্Λ܁Γฦ͢͜ͱʹΑͬͯɼ࠷ऴత ʹݸͷσʔλʹͳΔɽ
 ͜Ε͕''5ͷܭࢉͰ͋Δɽ W N 2 ͷγάφϧ ϑϩʔਤ W N 2 ͷγάφϧ ϑϩʔਤ ⋯ ⋯ Xn ɹɹ͸Ϗοτ Ϧόʔεॱ
  76. ߴ଎ϑʔϦΤม׵''5 − − − X1 X5 − X3 X7 −

    − W0 4 W1 4 − X0 X4 − X2 X6 x4 x5 x6 x7 x0 x1 x2 x3 W0 4 W1 4 ৐ࢉճ਺ ৐ࢉճ਺͸Ͳͷ͘Β͍ʁ ෳૉ਺ͷܭࢉ͸େมʁ W1 8 − W2 8 − W3 8 W4 8 − − ճͷόλϑϥΠԋࢉ ճͷόλϑϥΠԋࢉ  ճͷෳૉ਺ͷ৐ࢉ ճͷόλϑϥΠԋࢉ  ճͷෳૉ਺ͷ৐ࢉ log2 N = log2 8 = 3 ஈ όλϑϥΠͷஈ਺ N 2 ճ N 2 ճ N 2 ճ ʻྫ͑͹ʼ N = 210 = 1024 N2 = 1024 × 1024 ≒ 1000000 N 2 (log2 N − 1) = 512 log2 210 − 1 ≒ 4600 %'5 ''5