Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
pythonの使い方
Search
kenyu
May 02, 2020
Education
0
160
pythonの使い方
pythonの導入など!未完なのでスライドは徐々に増やしていきます!
kenyu
May 02, 2020
Tweet
Share
More Decks by kenyu
See All by kenyu
植物はどのようにしてこの過酷な環境で生きているのか
kenyu0501
0
330
サポートベクターマシンとは?アルゴリズムや数学の徹底解説!!
kenyu0501
0
340
「フーリエ級数」から「高速フーリエ変換」まで全部やります!【2019.07.20更新】
kenyu0501
21
89k
脳波モデルを用いたReal-time集中状態判別器の実演と現状の稼働アルゴリズムの紹介
kenyu0501
2
390
脳神経細胞の活動をどのように数学的に 解釈したら良いのか?〜1952年のHodgkin-Huxley式から学ぶ〜
kenyu0501
0
450
セルオートマトンとは!?Cellular Automaton !?
kenyu0501
2
400
Other Decks in Education
See All in Education
Multimodal Interaction - Lecture 3 - Next Generation User Interfaces (4018166FNR)
signer
PRO
0
1.5k
より良い学振申請書(DC)を作ろう 2025
luiyoshida
0
2k
横浜翠嵐高校 職業講話 / Talk for YOKOHAMA SUIRAN 2024
mura_mi
0
180
統計学に必要な数学(線形代数含む)
kosugitti
0
360
プロダクト部門のマネージャー全員でマネジメントポリシーを宣言した記録_-_EMConf_JP_2025.2.27.pdf
stanby_inc
1
2k
Virtual and Augmented Reality - Lecture 8 - Next Generation User Interfaces (4018166FNR)
signer
PRO
0
1.6k
プログラミング教育する大学、ZEN大学
sifue
1
440
R6愛南町事前復興フォーラムリーフレット
bousaichiribu
0
250
ThingLink
matleenalaakso
28
4k
Analysis and Validation - Lecture 4 - Information Visualisation (4019538FNR)
signer
PRO
0
2k
アジャイルやっていきを醸成する内製講座
nomuson
1
420
Data Physicalisation - Lecture 9 - Next Generation User Interfaces (4018166FNR)
signer
PRO
0
370
Featured
See All Featured
Speed Design
sergeychernyshev
29
900
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.8k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
13
1.4k
The Cult of Friendly URLs
andyhume
78
6.3k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Being A Developer After 40
akosma
91
590k
4 Signs Your Business is Dying
shpigford
183
22k
Git: the NoSQL Database
bkeepers
PRO
430
65k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
Adopting Sorbet at Scale
ufuk
76
9.3k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
32
5.4k
Transcript
Pythonとは!? ・汎用スクリプト言語 ・機械学習を学ぶのに適した言語の一つ ・機械学習を試す上でライブラリの設備が整っている やっていくこと ・Python 3.5 (scikit-learn,Numpy,matplotlib,pandasの使い方) pythonのインストールはAnaconda (オープン・データサイエン
ス・プラットフォーム)を使うとすぐに実行できる環境が整うよ! https://www.continuum.io/ からダウンロードしてね
Pythonの起動確認 λʔϛφϧͰʮQZUIPOʯͱଧͭ QZUIPOͱ"OBDPOEBͷ໊લ͕ ֬ೝͰ͖ͨΒ0, 4DJLJUMFBSO͕͋Δ͔ ֬ೝͯ͠ΈΑ͏ʂʂ ͦͷޙɼʮTLMFBSO@@WFSTJPO@@ʯ ͱചͬͯWFSTJPO͕֬ೝͰ͖ͨΒᘳ ʮJNQPSUTLMFBSOʯͱίϚϯυ͢Δ ͪͳΈʹʮTLMFBSO@@WFSTJPO@@ʯ
ͷ@@ɼ֯Ξϯμʔόʔճʂ ͜ͷରϞʔυɼRVJU ͱೖྗ͢Δͱऴྃ͠·͢ɽ
conda update qt pyqt conda install -c spyder-ide spyder=3.3.1 conda
update spyder Spyderを使って動かそう QZUIPOΛ؆୯ʹಈ͔͢͜ͱ͕Ͱ͖ͯศརͰ͢ɽ ࠨଆʹεΫϦϓτΛॻ͘ΤσΟλ͕͋ͬͯɼӈଆͰίϯιʔϧΛ֬ೝͰ͖·͢ɽ ͳ͓ɼΠϯετʔϧɼλʔϛφϧ্ͰҎԼͷίϚϯυΛೖྗ͢Δ͜ͱͰߦ͍·ͨ͠ɽ Πϯετʔϧ͕ऴΘͬͨΒɼλʔϛφϧ্Ͱʮ4QZEFSʯͱଧ͍ͬͯͩ͘͞ɽ 4QZEFS͕ىಈ͠·͢
Numpyとは ・数値計算全般によく利用されるパッケージ ・np.arrayをいう配列クラスにより,高速な行列計算ができる Numpyの使い方 0. インポートする(よくnpという名前を与えてインポートする) 1. データ構造を用意する(N次元の配列) データ構造の形状と,要素の型を指定して,初期化する np.zeros(shape,
dtype=None) import numpy as np np.zeros(shape = (2,3), dtype=None) 例えばこうすると,2×3の2次元配列ができる. dtype = None(デフォルト)だと,np.float64かnp.int64になる
1. データ構造を用意する(N次元の配列) Numpyとは np.array(object, dtype=None, cory=True, order=None, subok=False, ndmin=0) ndarrayの要素にしたい値がすでに別の型のオブジェクトのイテラブル(リストや辞書)
として存在する場合はこっち.object以外の引数は気にしないでOK! 4行3列の配列に, 0.0が初期値として 入っている (Float64) 4行3列の配列に, int型が入っている 作った配列の形状とデータの型は, shape,dtypeで参照することが可能! np.arrayを使ってみよう!!!!!
np.arrayの色々な使い方:表示や転置,四則計算,形状変更 aとbの足し算の結果 aとbの結合の結果 aの形状の変更 1行12列へ aを転置 配列が理解できたら,とりあえずpythonは大丈夫だと思います!
配列の連結で便利な vstack と stack vstackは 縦に連結 hstackは横に連結
特定の行や列をして 取り出すことが可能 「np.loadtxt」でデータを読み込む
「np.savetxt」でデータを書き込む loadはこれが 入っている save.txt に保存
matplotlibとは ・グラフ描写を可能とするパッケージ (折れ線グラフ,散布図などいろいろ) 実際に描画してみよう! sin波と乱数をプロットしたものです. 簡単です. 参考図書:Pythonによる機械学習入門 https://amzn.to/2QqDvDw arange(開始,終了,刻み幅) プロット時に線のスタイルを指定
機械学習の「分類」,「回帰」,「クラスタリング」 「分類」・・・ あるデータから分類(クラス,ラベル)を予測するもの 正解データからルールを学習し,未知データを分類する 「回帰」・・・ あるデータから数値を予測するもの これも正解データから学習する 「クラスタリング」・・・ データの性質に従い,データの塊(クラスタ)を作るもの
正解データを必要としない
システムの振る舞いを,オブジェクトの相互作用として考える クラス(設計図)とインスタンス(実体)という概念を覚える必要がある クラスとインスタンスとは たくさん生成できるよ〜 はじめてのディープラーニング,我妻幸長,SB Creative オブジェクト指向によるプログラミングがあります. JOJUϝιου Pythonのメソッドは引数としてselfを受け取る BΠϯελϯεม
ՃͷϝιουͰɼ ΠϯελϯεมBͱͷԋࢉʂ ҰϝιουͰ͕ೖ͞ΕͪΌ͑ɼ ಉ͡ΠϯελϯεͷͲͷϝιου͔ΒͰ TFMGΛ༻͍ͯΞΫηεͰ͖Δ
Scikit-learn の train_test_spilt() 学習データと,テストデータの分割を行う ಛྔ ಛྔ ಛྔ ϥϕϧ PS
ɾ ɾ ɾ ɾ ɾ ɾ 9 ಛྔσʔλ Z ਖ਼ղϥϕϧ 9@USBJO ڭࢣσʔλ Z@USBJO ڭࢣϥϕϧ 9@UFTU ςετσʔλ Z@UFTU ςετϥϕϧ データセットから,特徴量 X と,ラベル y を分ける さらに,教師データと,テストデータに分ける 特徴量 X ラベル y 層化サンプリング (Stratified Sampling): サンプリングデータが偏らないように, 指定した変数(y)の出現頻度が一定になるようにしている