Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
その「人間らしさ」、本当に必要ですか? ~タスクにあわせた対話評価指標定義のススメ~ / LL...
Search
Mr. Bay Area
August 06, 2024
Technology
2
910
その「人間らしさ」、本当に必要ですか? ~タスクにあわせた対話評価指標定義のススメ~ / LLM Meetup 20240807
Mr. Bay Area
August 06, 2024
Tweet
Share
Other Decks in Technology
See All in Technology
Core Audio tapを使ったリアルタイム音声処理のお話
yuta0306
0
150
ビギナーであり続ける/beginning
ikuodanaka
1
200
2025-06-26_Lightning_Talk_for_Lightning_Talks
_hashimo2
2
110
How Community Opened Global Doors
hiroramos4
PRO
1
130
生成AI時代 文字コードを学ぶ意義を見出せるか?
hrsued
1
730
asken AI勉強会(Android)
tadashi_sato
0
140
ネットワーク保護はどう変わるのか?re:Inforce 2025最新アップデート解説
tokushun
0
150
Geminiとv0による高速プロトタイピング
shinya337
0
200
KubeCon + CloudNativeCon Japan 2025 Recap by CA
ponkio_o
PRO
0
250
Connect 100+を支える技術
kanyamaguc
0
150
Tech-Verse 2025 Global CTO Session
lycorptech_jp
PRO
0
1.2k
SpringBoot x TestContainerで実現するポータブル自動結合テスト
demaecan
0
120
Featured
See All Featured
Why You Should Never Use an ORM
jnunemaker
PRO
58
9.4k
RailsConf 2023
tenderlove
30
1.1k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
Code Review Best Practice
trishagee
69
18k
Visualization
eitanlees
146
16k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
181
53k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
The Cost Of JavaScript in 2023
addyosmani
51
8.5k
Into the Great Unknown - MozCon
thekraken
39
1.9k
How GitHub (no longer) Works
holman
314
140k
Practical Orchestrator
shlominoach
188
11k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.8k
Transcript
その「⼈間らしさ」、本当に必要ですか? 〜タスクにあわせた対話評価指標定義のススメ〜 べいえりあ @ 株式会社IVRy
⾃⼰紹介 名前:べいえりあ 肩書:Principal AI Engineer @ IVRy 専門:自然言語処理(10年くらいやってます) これまでの経歴: -
理論物理博士@ミシガン大学 - データサイエンス修士 @ニューヨーク大学 - Llama作ったチームでインターンやったり - Gemini作ってるチーム(の中の一チーム)でテックリードをやったり
IVRyって何やってるの? LLMを⽤いた電話の⾃動応答システムなどを作ってます
今回お話ししたいこと
UX的に良さげなAI ≠ ユーザーの役に⽴つAI (本番運⽤サービスを作るのはそんなに⽢くはない)
⼈間らしいAI ≠ ユーザーの役に⽴つAI (本番運⽤サービスを作るのはそんなに⽢くはない)
今回お話ししたいこと 今回のLTでは、 - 社内で作った⼈間らしい機能があまり使えなかった失敗談 - その機能が良いか悪いかを判別するためにどうすれば良いか? についてお話しします。
⼈間っぽいAIの機能:会話割り込み - GPT-4oのvoice modeでも実装される(された)機能 - ちなみに、⾒た⽬とは裏腹に割と簡単に実装できる ライブデモやります (…と思ったのですが、⽤意できなかったのでGPT-4oのデモ流します)
会話割り込み機能の良かった点 - ⼈間のような対話が実現できる - デモ受けはとても良い - AIの発話に被せるように話すユーザーは結 構存在する - 全体的な会話時間が短くなる
- 会話時間の短さはUX上重要
会話割り込み機能の悪かった点 - 「呟き」で認識失敗する - 「AIすご!」みたいな呟きをする⼈は 実トラフィックでも結構いる - ノイズが乗った場合にリカバリが困難 - ノイズが永遠にカットインし続ける
- 倍くらい⾳声認識API代がかかる 現状だと悪い点が勝ったため結局採⽤せず (ユースケースには依るはず)
実装した機能の良し悪しをどう評価するか →それを測るための評価指標が必要
タスクに応じて評価指標を正しく選択する タスク指向型対話 雑談(Cotomoなどはこっち) 電話の⾃動応答はタスク指向型対話 → タスク完了率を⽤いる VS タスクの完了が⽬的 タスクによってドメインが絞られる 短いほど良い
タスク完了率がゴールドスタンダード 特に⽬的は無い オープンドメイン ⻑いほど良い ユーザーの印象が重要
タスク完了率(Task Success Rate) 予約したい 8⽉8⽇の11時に3⼈で空きがありま す。名前を教えてください 明⽇の11時で3⼈です ⽥中です ありがとうございます。 予約が確定しました
⽇時を教えてください ⭕ 予約したい 8⽉8⽇の11時に3⼈で空きがありま す。名前を教えてください 明⽇の11時で3⼈です ⽥中です ありがとうございます。 予約が確定しました ⽇時を教えてください 予約したい すみません、認識できませんでした えーと何だっけ? えー… ⽇時を教えてください ❌ 終話 ⭕な対話の割合がタスク完了率
タスク完了率以外の評価指標について タスク完了率以外にも⾒る指標はある(Deriu, et al. 2019 が詳しい) タスク完了率に上記を加味して、総合的にリリース判断を⾏うのが重要 電話転送に繋がるか? 「会話の⻑さ」 サブシステム評価
まとめ
まとめ - AIと⾔えども「(中途半端な)⼈間らしさ」が正ではない - タスクに合わせて適した評価指標を使うべし - タスク指向型対話についてはタスク完了率が⼀番重要 - 実際にはタスク完了率以外にも様々な指標を組み合わせて⽤いる