Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
その「人間らしさ」、本当に必要ですか? ~タスクにあわせた対話評価指標定義のススメ~ / LL...
Search
Mr. Bay Area
August 06, 2024
Technology
2
1k
その「人間らしさ」、本当に必要ですか? ~タスクにあわせた対話評価指標定義のススメ~ / LLM Meetup 20240807
Mr. Bay Area
August 06, 2024
Tweet
Share
Other Decks in Technology
See All in Technology
顧客との商談議事録をみんなで読んで顧客解像度を上げよう
shibayu36
0
230
MCPでつなぐElasticsearchとLLM - 深夜の障害対応を楽にしたい / Bridging Elasticsearch and LLMs with MCP
sashimimochi
0
170
Red Hat OpenStack Services on OpenShift
tamemiya
0
100
Introduction to Sansan, inc / Sansan Global Development Center, Inc.
sansan33
PRO
0
3k
Embedded SREの終わりを設計する 「なんとなく」から計画的な自立支援へ
sansantech
PRO
3
2.4k
AWS Network Firewall Proxyを触ってみた
nagisa53
1
230
変化するコーディングエージェントとの現実的な付き合い方 〜Cursor安定択説と、ツールに依存しない「資産」〜
empitsu
4
1.4k
広告の効果検証を題材にした因果推論の精度検証について
zozotech
PRO
0
170
超初心者からでも大丈夫!オープンソース半導体の楽しみ方〜今こそ!オレオレチップをつくろう〜
keropiyo
0
110
OWASP Top 10:2025 リリースと 少しの日本語化にまつわる裏話
okdt
PRO
3
740
Ruby版 JSXのRuxが気になる
sansantech
PRO
0
150
We Built for Predictability; The Workloads Didn’t Care
stahnma
0
140
Featured
See All Featured
The Anti-SEO Checklist Checklist. Pubcon Cyber Week
ryanjones
0
62
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.2k
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.7k
End of SEO as We Know It (SMX Advanced Version)
ipullrank
3
3.9k
Neural Spatial Audio Processing for Sound Field Analysis and Control
skoyamalab
0
170
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.9k
Crafting Experiences
bethany
1
48
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.6k
Designing for humans not robots
tammielis
254
26k
コードの90%をAIが書く世界で何が待っているのか / What awaits us in a world where 90% of the code is written by AI
rkaga
60
42k
Test your architecture with Archunit
thirion
1
2.2k
Transcript
その「⼈間らしさ」、本当に必要ですか? 〜タスクにあわせた対話評価指標定義のススメ〜 べいえりあ @ 株式会社IVRy
⾃⼰紹介 名前:べいえりあ 肩書:Principal AI Engineer @ IVRy 専門:自然言語処理(10年くらいやってます) これまでの経歴: -
理論物理博士@ミシガン大学 - データサイエンス修士 @ニューヨーク大学 - Llama作ったチームでインターンやったり - Gemini作ってるチーム(の中の一チーム)でテックリードをやったり
IVRyって何やってるの? LLMを⽤いた電話の⾃動応答システムなどを作ってます
今回お話ししたいこと
UX的に良さげなAI ≠ ユーザーの役に⽴つAI (本番運⽤サービスを作るのはそんなに⽢くはない)
⼈間らしいAI ≠ ユーザーの役に⽴つAI (本番運⽤サービスを作るのはそんなに⽢くはない)
今回お話ししたいこと 今回のLTでは、 - 社内で作った⼈間らしい機能があまり使えなかった失敗談 - その機能が良いか悪いかを判別するためにどうすれば良いか? についてお話しします。
⼈間っぽいAIの機能:会話割り込み - GPT-4oのvoice modeでも実装される(された)機能 - ちなみに、⾒た⽬とは裏腹に割と簡単に実装できる ライブデモやります (…と思ったのですが、⽤意できなかったのでGPT-4oのデモ流します)
会話割り込み機能の良かった点 - ⼈間のような対話が実現できる - デモ受けはとても良い - AIの発話に被せるように話すユーザーは結 構存在する - 全体的な会話時間が短くなる
- 会話時間の短さはUX上重要
会話割り込み機能の悪かった点 - 「呟き」で認識失敗する - 「AIすご!」みたいな呟きをする⼈は 実トラフィックでも結構いる - ノイズが乗った場合にリカバリが困難 - ノイズが永遠にカットインし続ける
- 倍くらい⾳声認識API代がかかる 現状だと悪い点が勝ったため結局採⽤せず (ユースケースには依るはず)
実装した機能の良し悪しをどう評価するか →それを測るための評価指標が必要
タスクに応じて評価指標を正しく選択する タスク指向型対話 雑談(Cotomoなどはこっち) 電話の⾃動応答はタスク指向型対話 → タスク完了率を⽤いる VS タスクの完了が⽬的 タスクによってドメインが絞られる 短いほど良い
タスク完了率がゴールドスタンダード 特に⽬的は無い オープンドメイン ⻑いほど良い ユーザーの印象が重要
タスク完了率(Task Success Rate) 予約したい 8⽉8⽇の11時に3⼈で空きがありま す。名前を教えてください 明⽇の11時で3⼈です ⽥中です ありがとうございます。 予約が確定しました
⽇時を教えてください ⭕ 予約したい 8⽉8⽇の11時に3⼈で空きがありま す。名前を教えてください 明⽇の11時で3⼈です ⽥中です ありがとうございます。 予約が確定しました ⽇時を教えてください 予約したい すみません、認識できませんでした えーと何だっけ? えー… ⽇時を教えてください ❌ 終話 ⭕な対話の割合がタスク完了率
タスク完了率以外の評価指標について タスク完了率以外にも⾒る指標はある(Deriu, et al. 2019 が詳しい) タスク完了率に上記を加味して、総合的にリリース判断を⾏うのが重要 電話転送に繋がるか? 「会話の⻑さ」 サブシステム評価
まとめ
まとめ - AIと⾔えども「(中途半端な)⼈間らしさ」が正ではない - タスクに合わせて適した評価指標を使うべし - タスク指向型対話についてはタスク完了率が⼀番重要 - 実際にはタスク完了率以外にも様々な指標を組み合わせて⽤いる