$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
その「人間らしさ」、本当に必要ですか? ~タスクにあわせた対話評価指標定義のススメ~ / LL...
Search
Mr. Bay Area
August 06, 2024
Technology
2
1k
その「人間らしさ」、本当に必要ですか? ~タスクにあわせた対話評価指標定義のススメ~ / LLM Meetup 20240807
Mr. Bay Area
August 06, 2024
Tweet
Share
Other Decks in Technology
See All in Technology
AWS Trainium3 をちょっと身近に感じたい
bigmuramura
1
120
Ruby で作る大規模イベントネットワーク構築・運用支援システム TTDB
taketo1113
1
200
生成AI・AIエージェント時代、データサイエンティストは何をする人なのか?そして、今学生であるあなたは何を学ぶべきか?
kuri8ive
2
2.1k
Security Diaries of an Open Source IAM
ahus1
0
130
pmconf2025 - 他社事例を"自社仕様化"する技術_iRAFT法
daichi_yamashita
0
780
世界最速級 memcached 互換サーバー作った
yasukata
0
330
Microsoft Agent 365 を 30 分でなんとなく理解する
skmkzyk
1
1k
【AWS re:Invent 2025速報】AIビルダー向けアップデートをまとめて解説!
minorun365
4
470
モダンデータスタック (MDS) の話とデータ分析が起こすビジネス変革
sutotakeshi
0
410
Sansanが実践する Platform EngineeringとSREの協創
sansantech
PRO
2
600
著者と読み解くAIエージェント現場導入の勘所 Lancers TechBook#2
smiyawaki0820
12
5.9k
AWS CLIの新しい認証情報設定方法aws loginコマンドの実態
wkm2
2
250
Featured
See All Featured
Unsuck your backbone
ammeep
671
58k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
The Pragmatic Product Professional
lauravandoore
37
7.1k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.3k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.5k
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
It's Worth the Effort
3n
187
29k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
3k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.7k
Faster Mobile Websites
deanohume
310
31k
Statistics for Hackers
jakevdp
799
230k
Transcript
その「⼈間らしさ」、本当に必要ですか? 〜タスクにあわせた対話評価指標定義のススメ〜 べいえりあ @ 株式会社IVRy
⾃⼰紹介 名前:べいえりあ 肩書:Principal AI Engineer @ IVRy 専門:自然言語処理(10年くらいやってます) これまでの経歴: -
理論物理博士@ミシガン大学 - データサイエンス修士 @ニューヨーク大学 - Llama作ったチームでインターンやったり - Gemini作ってるチーム(の中の一チーム)でテックリードをやったり
IVRyって何やってるの? LLMを⽤いた電話の⾃動応答システムなどを作ってます
今回お話ししたいこと
UX的に良さげなAI ≠ ユーザーの役に⽴つAI (本番運⽤サービスを作るのはそんなに⽢くはない)
⼈間らしいAI ≠ ユーザーの役に⽴つAI (本番運⽤サービスを作るのはそんなに⽢くはない)
今回お話ししたいこと 今回のLTでは、 - 社内で作った⼈間らしい機能があまり使えなかった失敗談 - その機能が良いか悪いかを判別するためにどうすれば良いか? についてお話しします。
⼈間っぽいAIの機能:会話割り込み - GPT-4oのvoice modeでも実装される(された)機能 - ちなみに、⾒た⽬とは裏腹に割と簡単に実装できる ライブデモやります (…と思ったのですが、⽤意できなかったのでGPT-4oのデモ流します)
会話割り込み機能の良かった点 - ⼈間のような対話が実現できる - デモ受けはとても良い - AIの発話に被せるように話すユーザーは結 構存在する - 全体的な会話時間が短くなる
- 会話時間の短さはUX上重要
会話割り込み機能の悪かった点 - 「呟き」で認識失敗する - 「AIすご!」みたいな呟きをする⼈は 実トラフィックでも結構いる - ノイズが乗った場合にリカバリが困難 - ノイズが永遠にカットインし続ける
- 倍くらい⾳声認識API代がかかる 現状だと悪い点が勝ったため結局採⽤せず (ユースケースには依るはず)
実装した機能の良し悪しをどう評価するか →それを測るための評価指標が必要
タスクに応じて評価指標を正しく選択する タスク指向型対話 雑談(Cotomoなどはこっち) 電話の⾃動応答はタスク指向型対話 → タスク完了率を⽤いる VS タスクの完了が⽬的 タスクによってドメインが絞られる 短いほど良い
タスク完了率がゴールドスタンダード 特に⽬的は無い オープンドメイン ⻑いほど良い ユーザーの印象が重要
タスク完了率(Task Success Rate) 予約したい 8⽉8⽇の11時に3⼈で空きがありま す。名前を教えてください 明⽇の11時で3⼈です ⽥中です ありがとうございます。 予約が確定しました
⽇時を教えてください ⭕ 予約したい 8⽉8⽇の11時に3⼈で空きがありま す。名前を教えてください 明⽇の11時で3⼈です ⽥中です ありがとうございます。 予約が確定しました ⽇時を教えてください 予約したい すみません、認識できませんでした えーと何だっけ? えー… ⽇時を教えてください ❌ 終話 ⭕な対話の割合がタスク完了率
タスク完了率以外の評価指標について タスク完了率以外にも⾒る指標はある(Deriu, et al. 2019 が詳しい) タスク完了率に上記を加味して、総合的にリリース判断を⾏うのが重要 電話転送に繋がるか? 「会話の⻑さ」 サブシステム評価
まとめ
まとめ - AIと⾔えども「(中途半端な)⼈間らしさ」が正ではない - タスクに合わせて適した評価指標を使うべし - タスク指向型対話についてはタスク完了率が⼀番重要 - 実際にはタスク完了率以外にも様々な指標を組み合わせて⽤いる