Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Apache Kafka
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
Eko Kurniawan Khannedy
August 30, 2017
Technology
1
4.4k
Apache Kafka
JVM Meetup #5 - Apache Kafka at Blibli.com
Eko Kurniawan Khannedy
August 30, 2017
Tweet
Share
More Decks by Eko Kurniawan Khannedy
See All by Eko Kurniawan Khannedy
Monolith to Event-Driven Microservices
khannedy
1
270
Refactoring
khannedy
0
350
Multi-Datacenter Kafka at Blibli.com
khannedy
2
1.5k
QA Tools - Research and Development
khannedy
0
290
Reactive Puzzle
khannedy
0
210
Event-Driven Architecture
khannedy
1
2k
Resilience Engineering with Hystrix and Spring
khannedy
1
570
Mocking for Unit Test using Mockito
khannedy
1
340
Centralized Configuration using Consul and Spring Cloud
khannedy
2
710
Other Decks in Technology
See All in Technology
セキュリティについて学ぶ会 / 2026 01 25 Takamatsu WordPress Meetup
rocketmartue
1
300
データの整合性を保ちたいだけなんだ
shoheimitani
8
3.1k
M&A 後の統合をどう進めるか ─ ナレッジワーク × Poetics が実践した組織とシステムの融合
kworkdev
PRO
1
430
FinTech SREのAWSサービス活用/Leveraging AWS Services in FinTech SRE
maaaato
0
130
Bill One 開発エンジニア 紹介資料
sansan33
PRO
4
17k
AI駆動PjMの理想像 と現在地 -実践例を添えて-
masahiro_okamura
1
110
StrandsとNeptuneを使ってナレッジグラフを構築する
yakumo
1
110
ClickHouseはどのように大規模データを活用したAIエージェントを全社展開しているのか
mikimatsumoto
0
220
広告の効果検証を題材にした因果推論の精度検証について
zozotech
PRO
0
160
AzureでのIaC - Bicep? Terraform? それ早く言ってよ会議
torumakabe
1
520
マーケットプレイス版Oracle WebCenter Content For OCI
oracle4engineer
PRO
5
1.6k
What happened to RubyGems and what can we learn?
mikemcquaid
0
280
Featured
See All Featured
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.6k
Digital Ethics as a Driver of Design Innovation
axbom
PRO
1
180
How to build a perfect <img>
jonoalderson
1
4.9k
Side Projects
sachag
455
43k
GraphQLの誤解/rethinking-graphql
sonatard
74
11k
sira's awesome portfolio website redesign presentation
elsirapls
0
150
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
287
14k
Mind Mapping
helmedeiros
PRO
0
80
Leading Effective Engineering Teams in the AI Era
addyosmani
9
1.6k
Groundhog Day: Seeking Process in Gaming for Health
codingconduct
0
92
Discover your Explorer Soul
emna__ayadi
2
1.1k
Transcript
APACHE KAFKA EKO KURNIAWAN KHANNEDY
APACHE KAFKA EKO KURNIAWAN KHANNEDY ▸ Principal Software Development Engineer
at Blibli.com ▸ Part of RnD Team at Blibli.com ▸
[email protected]
APACHE KAFKA AGENDA ▸ Kafka Intro ▸ Kafka Internals ▸
Installing Kafka ▸ Kafka Producer ▸ Kafka Consumer ▸ Kafka in blibli.com ▸ Demo ▸ Conclusion
KAFKA INTRO APACHE KAFKA
APACHE KAFKA BEFORE PUBLISH / SUBSCRIBE MESSAGING MEMBER ORDER RISK
PAYMENT … ERP FINANCE …
APACHE KAFKA PUBLISH / SUBSCRIBE MESSAGING MEMBER ORDER RISK PAYMENT
… ERP FINANCE … MESSAGING SYSTEM / MESSAGE BROKER
None
APACHE KAFKA WHAT IS KAFKA ▸ Apache Kafka is a
publish/subscribe messaging system, or more recently a “distributing streaming platform” ▸ Opensource project under Apache Software Foundation.
APACHE KAFKA KAFKA HISTORY ▸ Kafka was born to solve
the data pipeline problem in LinkedIn. ▸ The development team at LinkedIn was led by Jay Kreps, now CEO of Confluent. ▸ Kafka was released as an Open Source project on Github in late 2010, and join Apache Software Foundation in 2011.
KAFKA INTERNALS APACHE KAFKA
APACHE KAFKA BROKER TOPIC A PARTITION 0 TOPIC A PARTITION
1 KAFKA BROKER
APACHE KAFKA CLUSTER TOPIC A PARTITION 0 TOPIC A PARTITION
1 (LEADER) KAFKA BROKER 1 TOPIC A PARTITION 0 TOPIC A PARTITION 1 (LEADER) KAFKA BROKER 2
APACHE KAFKA TOPICS ▸ Messages in Kafka are categorized into
Topics. ▸ The closest analogy for topic is a database table, or a folder in filesystem.
APACHE KAFKA PARTITIONS
APACHE KAFKA REPLICATION FACTOR TOPIC A PARTITION 0 TOPIC A
PARTITION 1 KAFKA BROKER 1 TOPIC A PARTITION 0 KAFKA BROKER 2 TOPIC A PARTITION 1 KAFKA BROKER 3 TOPIC A PARTITION 0 TOPIC A PARTITION 1 KAFKA BROKER 4
APACHE KAFKA CONSUMER GROUP
APACHE KAFKA CONSUMER GROUP (2)
APACHE KAFKA RETENTION POLICY ▸ A key feature of Apache
Kafka is that of retention, or the durable storage of messages for some period of time. ▸ We can set retention policy per topics by time or by size.
APACHE KAFKA MIRROR MAKER
INSTALLING KAFKA APACHE KAFKA
APACHE KAFKA JAVA ▸ Kafka using Java 8.
APACHE KAFKA ZOOKEEPER KAFKA BROKER PRODUCER CONSUMER ZOOKEEPER Metadata
APACHE KAFKA KAFKA BROKER # Minimum Broker Configuration broker.id=0 #
must unique in cluster zookeeper.connect=localhost:2181 log.dirs=data/kafka-logs
APACHE KAFKA CREATE / UPDATE TOPIC kafka-topics.sh --create --zookeeper localhost:2181
-- replication-factor 1 --partitions 1 --topic topic_name kafka-topics.sh --zookeeper localhost:2181 --alter --topic topic_name --partitions 2 --replication-factor 2
KAFKA PRODUCER APACHE KAFKA
APACHE KAFKA PRODUCER RECORD PRODUCER RECORD TOPIC PARTITION KEY VALUE
APACHE KAFKA SERIALIZER PRODUCER RECORD TOPIC PARTITION KEY VALUE SERIALIZER
APACHE KAFKA PARTITIONER PRODUCER RECORD TOPIC PARTITION KEY VALUE SERIALIZER
PARTITIONER Send to Broker
APACHE KAFKA KAFKA PRODUCER Properties props = new Properties(); props.put("bootstrap.servers",
"broker1:9092,broker2:9092"); props.put("key.serializer", “org.apache.kafka.common.serialization.StringSerializer"); props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer"); producer = new KafkaProducer<String, String>(kafkaProps);
APACHE KAFKA SEND MESSAGE record = new ProducerRecord<>(topicName, key, value);
producer.send(record);
KAFKA CONSUMER APACHE KAFKA
APACHE KAFKA CONSUMER GROUP
APACHE KAFKA PARTITION REBALANCE
APACHE KAFKA PARTITION REBALANCE
APACHE KAFKA PARTITION REBALANCE
APACHE KAFKA CONSUMER RECORD & DESERIALIZER CONSUMER RECORD TOPIC PARTITION
KEY VALUE DESERIALIZER From Broker
APACHE KAFKA KAFKA CONSUMER Properties props = new Properties(); props.put("bootstrap.servers",
"broker1:9092,broker2:9092"); props.put("group.id", "GroupName"); props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); consumer = new KafkaConsumer<String, String>(props);
APACHE KAFKA GET MESSAGES consumer.subscribe(Collections.singletonList("topicName")); Long timeout = 1000L; ConsumerRecords<String,
String> records = consumer.poll(timeout);
KAFKA IN BLIBLI APACHE KAFKA
APACHE KAFKA API GATEWAY EVENT API GATEWAY MEMBER API GATEWAY
COMMON API GATEWAY … KAFKA ANALYTICS … …
APACHE KAFKA CURRENT PRODUCT (CODENAME X) X MEMBER X CART
X AUTH X WISHLIST API GATEWAY X YYYY X XXX X ORDER X PRODUCT
APACHE KAFKA NEW PRODUCT (CODENAME VERONICA) VERONICA MEMBER VERONICA CORE
VERONICA MERCHANT KAFKA VERONICA NOTIFICATION API GATEWAY
DEMO
CONCLUSION APACHE KAFKA
APACHE KAFKA WHY KAFKA? ▸ Multiple Consumer ▸ Flexible Scalability
▸ Flexible Durability ▸ High Performance ▸ Multi-Datacenter
WE ARE HIRING!
[email protected]
APACHE KAFKA
APACHE KAFKA REFERENCES ▸ http://kafka.apache.org/ ▸ https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million- writes-second-three-cheap-machines ▸ https://engineering.linkedin.com/kafka/running-kafka-scale