Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Apache Kafka
Search
Eko Kurniawan Khannedy
August 30, 2017
Technology
1
4.3k
Apache Kafka
JVM Meetup #5 - Apache Kafka at Blibli.com
Eko Kurniawan Khannedy
August 30, 2017
Tweet
Share
More Decks by Eko Kurniawan Khannedy
See All by Eko Kurniawan Khannedy
Monolith to Event-Driven Microservices
khannedy
1
250
Refactoring
khannedy
0
310
Multi-Datacenter Kafka at Blibli.com
khannedy
2
1.5k
QA Tools - Research and Development
khannedy
0
270
Reactive Puzzle
khannedy
0
190
Event-Driven Architecture
khannedy
1
1.8k
Resilience Engineering with Hystrix and Spring
khannedy
1
560
Mocking for Unit Test using Mockito
khannedy
1
330
Centralized Configuration using Consul and Spring Cloud
khannedy
2
650
Other Decks in Technology
See All in Technology
Iceberg Meetup Japan #1 : Iceberg and Databricks
databricksjapan
0
370
急成長する企業で作った、エンジニアが輝ける制度/ 20250227 Rinto Ikenoue
shift_evolve
0
130
日経のデータベース事業とElasticsearch
hinatades
PRO
0
230
Share my, our lessons from the road to re:Invent
naospon
0
140
AI Agent時代なのでAWSのLLMs.txtが欲しい!
watany
2
230
AWSを活用したIoTにおけるセキュリティ対策のご紹介
kwskyk
0
350
Fraxinus00tw assembly manual
fukumay
0
100
Windows の新しい管理者保護モード
murachiakira
0
200
データベースの負荷を紐解く/untangle-the-database-load
emiki
2
510
ディスプレイ広告(Yahoo!広告・LINE広告)におけるバックエンド開発
lycorptech_jp
PRO
0
360
ExaDB-XSで利用されているExadata Exascaleについて
oracle4engineer
PRO
3
250
【詳説】コンテンツ配信 システムの複数機能 基盤への拡張
hatena
0
240
Featured
See All Featured
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
4
370
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.3k
Reflections from 52 weeks, 52 projects
jeffersonlam
348
20k
Designing on Purpose - Digital PM Summit 2013
jponch
117
7.1k
The Cult of Friendly URLs
andyhume
78
6.2k
Thoughts on Productivity
jonyablonski
69
4.5k
Fashionably flexible responsive web design (full day workshop)
malarkey
406
66k
RailsConf 2023
tenderlove
29
1k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
The Pragmatic Product Professional
lauravandoore
32
6.4k
Why Our Code Smells
bkeepers
PRO
336
57k
Designing Experiences People Love
moore
140
23k
Transcript
APACHE KAFKA EKO KURNIAWAN KHANNEDY
APACHE KAFKA EKO KURNIAWAN KHANNEDY ▸ Principal Software Development Engineer
at Blibli.com ▸ Part of RnD Team at Blibli.com ▸
[email protected]
APACHE KAFKA AGENDA ▸ Kafka Intro ▸ Kafka Internals ▸
Installing Kafka ▸ Kafka Producer ▸ Kafka Consumer ▸ Kafka in blibli.com ▸ Demo ▸ Conclusion
KAFKA INTRO APACHE KAFKA
APACHE KAFKA BEFORE PUBLISH / SUBSCRIBE MESSAGING MEMBER ORDER RISK
PAYMENT … ERP FINANCE …
APACHE KAFKA PUBLISH / SUBSCRIBE MESSAGING MEMBER ORDER RISK PAYMENT
… ERP FINANCE … MESSAGING SYSTEM / MESSAGE BROKER
None
APACHE KAFKA WHAT IS KAFKA ▸ Apache Kafka is a
publish/subscribe messaging system, or more recently a “distributing streaming platform” ▸ Opensource project under Apache Software Foundation.
APACHE KAFKA KAFKA HISTORY ▸ Kafka was born to solve
the data pipeline problem in LinkedIn. ▸ The development team at LinkedIn was led by Jay Kreps, now CEO of Confluent. ▸ Kafka was released as an Open Source project on Github in late 2010, and join Apache Software Foundation in 2011.
KAFKA INTERNALS APACHE KAFKA
APACHE KAFKA BROKER TOPIC A PARTITION 0 TOPIC A PARTITION
1 KAFKA BROKER
APACHE KAFKA CLUSTER TOPIC A PARTITION 0 TOPIC A PARTITION
1 (LEADER) KAFKA BROKER 1 TOPIC A PARTITION 0 TOPIC A PARTITION 1 (LEADER) KAFKA BROKER 2
APACHE KAFKA TOPICS ▸ Messages in Kafka are categorized into
Topics. ▸ The closest analogy for topic is a database table, or a folder in filesystem.
APACHE KAFKA PARTITIONS
APACHE KAFKA REPLICATION FACTOR TOPIC A PARTITION 0 TOPIC A
PARTITION 1 KAFKA BROKER 1 TOPIC A PARTITION 0 KAFKA BROKER 2 TOPIC A PARTITION 1 KAFKA BROKER 3 TOPIC A PARTITION 0 TOPIC A PARTITION 1 KAFKA BROKER 4
APACHE KAFKA CONSUMER GROUP
APACHE KAFKA CONSUMER GROUP (2)
APACHE KAFKA RETENTION POLICY ▸ A key feature of Apache
Kafka is that of retention, or the durable storage of messages for some period of time. ▸ We can set retention policy per topics by time or by size.
APACHE KAFKA MIRROR MAKER
INSTALLING KAFKA APACHE KAFKA
APACHE KAFKA JAVA ▸ Kafka using Java 8.
APACHE KAFKA ZOOKEEPER KAFKA BROKER PRODUCER CONSUMER ZOOKEEPER Metadata
APACHE KAFKA KAFKA BROKER # Minimum Broker Configuration broker.id=0 #
must unique in cluster zookeeper.connect=localhost:2181 log.dirs=data/kafka-logs
APACHE KAFKA CREATE / UPDATE TOPIC kafka-topics.sh --create --zookeeper localhost:2181
-- replication-factor 1 --partitions 1 --topic topic_name kafka-topics.sh --zookeeper localhost:2181 --alter --topic topic_name --partitions 2 --replication-factor 2
KAFKA PRODUCER APACHE KAFKA
APACHE KAFKA PRODUCER RECORD PRODUCER RECORD TOPIC PARTITION KEY VALUE
APACHE KAFKA SERIALIZER PRODUCER RECORD TOPIC PARTITION KEY VALUE SERIALIZER
APACHE KAFKA PARTITIONER PRODUCER RECORD TOPIC PARTITION KEY VALUE SERIALIZER
PARTITIONER Send to Broker
APACHE KAFKA KAFKA PRODUCER Properties props = new Properties(); props.put("bootstrap.servers",
"broker1:9092,broker2:9092"); props.put("key.serializer", “org.apache.kafka.common.serialization.StringSerializer"); props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer"); producer = new KafkaProducer<String, String>(kafkaProps);
APACHE KAFKA SEND MESSAGE record = new ProducerRecord<>(topicName, key, value);
producer.send(record);
KAFKA CONSUMER APACHE KAFKA
APACHE KAFKA CONSUMER GROUP
APACHE KAFKA PARTITION REBALANCE
APACHE KAFKA PARTITION REBALANCE
APACHE KAFKA PARTITION REBALANCE
APACHE KAFKA CONSUMER RECORD & DESERIALIZER CONSUMER RECORD TOPIC PARTITION
KEY VALUE DESERIALIZER From Broker
APACHE KAFKA KAFKA CONSUMER Properties props = new Properties(); props.put("bootstrap.servers",
"broker1:9092,broker2:9092"); props.put("group.id", "GroupName"); props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); consumer = new KafkaConsumer<String, String>(props);
APACHE KAFKA GET MESSAGES consumer.subscribe(Collections.singletonList("topicName")); Long timeout = 1000L; ConsumerRecords<String,
String> records = consumer.poll(timeout);
KAFKA IN BLIBLI APACHE KAFKA
APACHE KAFKA API GATEWAY EVENT API GATEWAY MEMBER API GATEWAY
COMMON API GATEWAY … KAFKA ANALYTICS … …
APACHE KAFKA CURRENT PRODUCT (CODENAME X) X MEMBER X CART
X AUTH X WISHLIST API GATEWAY X YYYY X XXX X ORDER X PRODUCT
APACHE KAFKA NEW PRODUCT (CODENAME VERONICA) VERONICA MEMBER VERONICA CORE
VERONICA MERCHANT KAFKA VERONICA NOTIFICATION API GATEWAY
DEMO
CONCLUSION APACHE KAFKA
APACHE KAFKA WHY KAFKA? ▸ Multiple Consumer ▸ Flexible Scalability
▸ Flexible Durability ▸ High Performance ▸ Multi-Datacenter
WE ARE HIRING!
[email protected]
APACHE KAFKA
APACHE KAFKA REFERENCES ▸ http://kafka.apache.org/ ▸ https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million- writes-second-three-cheap-machines ▸ https://engineering.linkedin.com/kafka/running-kafka-scale