Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Apache Kafka
Search
Eko Kurniawan Khannedy
August 30, 2017
Technology
1
4.4k
Apache Kafka
JVM Meetup #5 - Apache Kafka at Blibli.com
Eko Kurniawan Khannedy
August 30, 2017
Tweet
Share
More Decks by Eko Kurniawan Khannedy
See All by Eko Kurniawan Khannedy
Monolith to Event-Driven Microservices
khannedy
1
270
Refactoring
khannedy
0
350
Multi-Datacenter Kafka at Blibli.com
khannedy
2
1.5k
QA Tools - Research and Development
khannedy
0
290
Reactive Puzzle
khannedy
0
210
Event-Driven Architecture
khannedy
1
2k
Resilience Engineering with Hystrix and Spring
khannedy
1
570
Mocking for Unit Test using Mockito
khannedy
1
340
Centralized Configuration using Consul and Spring Cloud
khannedy
2
710
Other Decks in Technology
See All in Technology
~Everything as Codeを諦めない~ 後からCDK
mu7889yoon
3
330
Embedded SREの終わりを設計する 「なんとなく」から計画的な自立支援へ
sansantech
PRO
3
2.3k
予期せぬコストの急増を障害のように扱う――「コスト版ポストモーテム」の導入とその後の改善
muziyoshiz
1
1.8k
超初心者からでも大丈夫!オープンソース半導体の楽しみ方〜今こそ!オレオレチップをつくろう〜
keropiyo
0
110
2026年、サーバーレスの現在地 -「制約と戦う技術」から「当たり前の実行基盤」へ- /serverless2026
slsops
2
230
顧客との商談議事録をみんなで読んで顧客解像度を上げよう
shibayu36
0
210
Ruby版 JSXのRuxが気になる
sansantech
PRO
0
150
usermode linux without MMU - fosdem2026 kernel devroom
thehajime
0
230
Bill One 開発エンジニア 紹介資料
sansan33
PRO
4
17k
モダンUIでフルサーバーレスなAIエージェントをAmplifyとCDKでサクッとデプロイしよう
minorun365
4
180
小さく始めるBCP ― 多プロダクト環境で始める最初の一歩
kekke_n
1
390
Azure Durable Functions で作った NL2SQL Agent の精度向上に取り組んだ話/jat08
thara0402
0
170
Featured
See All Featured
Unlocking the hidden potential of vector embeddings in international SEO
frankvandijk
0
170
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
More Than Pixels: Becoming A User Experience Designer
marktimemedia
3
320
Pawsitive SEO: Lessons from My Dog (and Many Mistakes) on Thriving as a Consultant in the Age of AI
davidcarrasco
0
63
Raft: Consensus for Rubyists
vanstee
141
7.3k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
GitHub's CSS Performance
jonrohan
1032
470k
Stop Working from a Prison Cell
hatefulcrawdad
273
21k
Information Architects: The Missing Link in Design Systems
soysaucechin
0
770
Facilitating Awesome Meetings
lara
57
6.8k
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
200
How To Speak Unicorn (iThemes Webinar)
marktimemedia
1
380
Transcript
APACHE KAFKA EKO KURNIAWAN KHANNEDY
APACHE KAFKA EKO KURNIAWAN KHANNEDY ▸ Principal Software Development Engineer
at Blibli.com ▸ Part of RnD Team at Blibli.com ▸
[email protected]
APACHE KAFKA AGENDA ▸ Kafka Intro ▸ Kafka Internals ▸
Installing Kafka ▸ Kafka Producer ▸ Kafka Consumer ▸ Kafka in blibli.com ▸ Demo ▸ Conclusion
KAFKA INTRO APACHE KAFKA
APACHE KAFKA BEFORE PUBLISH / SUBSCRIBE MESSAGING MEMBER ORDER RISK
PAYMENT … ERP FINANCE …
APACHE KAFKA PUBLISH / SUBSCRIBE MESSAGING MEMBER ORDER RISK PAYMENT
… ERP FINANCE … MESSAGING SYSTEM / MESSAGE BROKER
None
APACHE KAFKA WHAT IS KAFKA ▸ Apache Kafka is a
publish/subscribe messaging system, or more recently a “distributing streaming platform” ▸ Opensource project under Apache Software Foundation.
APACHE KAFKA KAFKA HISTORY ▸ Kafka was born to solve
the data pipeline problem in LinkedIn. ▸ The development team at LinkedIn was led by Jay Kreps, now CEO of Confluent. ▸ Kafka was released as an Open Source project on Github in late 2010, and join Apache Software Foundation in 2011.
KAFKA INTERNALS APACHE KAFKA
APACHE KAFKA BROKER TOPIC A PARTITION 0 TOPIC A PARTITION
1 KAFKA BROKER
APACHE KAFKA CLUSTER TOPIC A PARTITION 0 TOPIC A PARTITION
1 (LEADER) KAFKA BROKER 1 TOPIC A PARTITION 0 TOPIC A PARTITION 1 (LEADER) KAFKA BROKER 2
APACHE KAFKA TOPICS ▸ Messages in Kafka are categorized into
Topics. ▸ The closest analogy for topic is a database table, or a folder in filesystem.
APACHE KAFKA PARTITIONS
APACHE KAFKA REPLICATION FACTOR TOPIC A PARTITION 0 TOPIC A
PARTITION 1 KAFKA BROKER 1 TOPIC A PARTITION 0 KAFKA BROKER 2 TOPIC A PARTITION 1 KAFKA BROKER 3 TOPIC A PARTITION 0 TOPIC A PARTITION 1 KAFKA BROKER 4
APACHE KAFKA CONSUMER GROUP
APACHE KAFKA CONSUMER GROUP (2)
APACHE KAFKA RETENTION POLICY ▸ A key feature of Apache
Kafka is that of retention, or the durable storage of messages for some period of time. ▸ We can set retention policy per topics by time or by size.
APACHE KAFKA MIRROR MAKER
INSTALLING KAFKA APACHE KAFKA
APACHE KAFKA JAVA ▸ Kafka using Java 8.
APACHE KAFKA ZOOKEEPER KAFKA BROKER PRODUCER CONSUMER ZOOKEEPER Metadata
APACHE KAFKA KAFKA BROKER # Minimum Broker Configuration broker.id=0 #
must unique in cluster zookeeper.connect=localhost:2181 log.dirs=data/kafka-logs
APACHE KAFKA CREATE / UPDATE TOPIC kafka-topics.sh --create --zookeeper localhost:2181
-- replication-factor 1 --partitions 1 --topic topic_name kafka-topics.sh --zookeeper localhost:2181 --alter --topic topic_name --partitions 2 --replication-factor 2
KAFKA PRODUCER APACHE KAFKA
APACHE KAFKA PRODUCER RECORD PRODUCER RECORD TOPIC PARTITION KEY VALUE
APACHE KAFKA SERIALIZER PRODUCER RECORD TOPIC PARTITION KEY VALUE SERIALIZER
APACHE KAFKA PARTITIONER PRODUCER RECORD TOPIC PARTITION KEY VALUE SERIALIZER
PARTITIONER Send to Broker
APACHE KAFKA KAFKA PRODUCER Properties props = new Properties(); props.put("bootstrap.servers",
"broker1:9092,broker2:9092"); props.put("key.serializer", “org.apache.kafka.common.serialization.StringSerializer"); props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer"); producer = new KafkaProducer<String, String>(kafkaProps);
APACHE KAFKA SEND MESSAGE record = new ProducerRecord<>(topicName, key, value);
producer.send(record);
KAFKA CONSUMER APACHE KAFKA
APACHE KAFKA CONSUMER GROUP
APACHE KAFKA PARTITION REBALANCE
APACHE KAFKA PARTITION REBALANCE
APACHE KAFKA PARTITION REBALANCE
APACHE KAFKA CONSUMER RECORD & DESERIALIZER CONSUMER RECORD TOPIC PARTITION
KEY VALUE DESERIALIZER From Broker
APACHE KAFKA KAFKA CONSUMER Properties props = new Properties(); props.put("bootstrap.servers",
"broker1:9092,broker2:9092"); props.put("group.id", "GroupName"); props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); consumer = new KafkaConsumer<String, String>(props);
APACHE KAFKA GET MESSAGES consumer.subscribe(Collections.singletonList("topicName")); Long timeout = 1000L; ConsumerRecords<String,
String> records = consumer.poll(timeout);
KAFKA IN BLIBLI APACHE KAFKA
APACHE KAFKA API GATEWAY EVENT API GATEWAY MEMBER API GATEWAY
COMMON API GATEWAY … KAFKA ANALYTICS … …
APACHE KAFKA CURRENT PRODUCT (CODENAME X) X MEMBER X CART
X AUTH X WISHLIST API GATEWAY X YYYY X XXX X ORDER X PRODUCT
APACHE KAFKA NEW PRODUCT (CODENAME VERONICA) VERONICA MEMBER VERONICA CORE
VERONICA MERCHANT KAFKA VERONICA NOTIFICATION API GATEWAY
DEMO
CONCLUSION APACHE KAFKA
APACHE KAFKA WHY KAFKA? ▸ Multiple Consumer ▸ Flexible Scalability
▸ Flexible Durability ▸ High Performance ▸ Multi-Datacenter
WE ARE HIRING!
[email protected]
APACHE KAFKA
APACHE KAFKA REFERENCES ▸ http://kafka.apache.org/ ▸ https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million- writes-second-three-cheap-machines ▸ https://engineering.linkedin.com/kafka/running-kafka-scale