r1 < r2 or H2: r1 > r2 Step 1: 上の仮説を改定する。Hʼ1: x1 , x2 の同時分布が Hʼ2: x1 , x2 の同時分布が Step 2: 単純出⽣過程(微⼩時間において1⼈の感染者は⾼々1⼈の感染者を⽣む)を仮定すると、 決定関数は Step 3: αをtype 1 error rateとして 37 <latexit sha1_base64="Nj1TEJwYVA9X7aFpUNFaIHvCTWM=">AAACY3icfVBdaxNBFJ2stbaptmn0TQqDQagSwm7w682gffCltIJpAkkMdyc36dD5WGbuimHJ//BV/1V/gP+js2kKbSpeGOZw7rlfJ82U9BTHl5XowcbDzUdb29Wdx09292r79TNvcyewK6yyrp+CRyUNdkmSwn7mEHSqsJdefC7zvR/ovLTmG80zHGmYGTmVAihQ3/vj5JBeNXl/3A7/uNaIW/Ey+H2QrECDreJ0vF/5OJxYkWs0JBR4P0jijEYFOJJC4aI6zD1mIC5ghoMADWj0o2K59oK/DMyET60LzxBfsrcrCtDez3UalBro3K/nSrKZ6n+lBzlNP4wKabKc0IjrWdNccbK8tIFPpENBah4ACCfDulycgwNBwaw7g8reZK3y4ZojDFc6PA7USYYOyLrXxRDcTEuzCFfPhs0S/U8IP2+EAVWrwfJk3eD74KzdSt613n590+h8Wpm/xZ6zF+yQJew967Av7JR1mWCO/WK/2Z/K32gnqkfPrqVRZVXzlN2J6OAKz+C4dw==</latexit> X1(t), X2(t) <latexit sha1_base64="L/hH7FT+TWtUJbbttQXJu121m+8=">AAACgXicfVBdaxNBFJ1sq9a02tQ++jIYhKQsYTeoLZRgsX3oixjBtIEkLLOTm3TofCwzd0vDkv/QX+Or/g3/jbPpFvohXhg4nHvuvXNOmknhMIr+1IK19WfPX2y8rG9uvXq93dh5c+ZMbjkMuJHGDlPmQAoNAxQoYZhZYCqVcJ5eHpf98yuwThj9AxcZTBSbazETnKGnksZelhQ2EcvWdSJCbNMe7beGFYXtnmfbIRW0F4fdpNGMOtGq6FMQV6BJquonO7XP46nhuQKNXDLnRnGU4aRgFgWXsKyPcwcZ45dsDiMPNVPgJsXK1JK+98yUzoz1TyNdsfcnCqacW6jUKxXDC/e4V5Jhqv7VHuU4O5gUQmc5gua3t2a5pGhoGRKdCgsc5cIDxq3w36X8glnG0Uf54FC5G42Rzrs5Ae/SwldPfcvAMjR2rxgzO1dCL73r+Tgs0f+E7PpO6FG97iOPHwf8FJx1O/GnzsfvH5pHX6rwN8hb8o60SEz2yRE5JX0yIJzckJ/kF/kdrAXtIAq6t9KgVs3skgcVHP4FwL/CNg==</latexit> pri (xi, t) = P(Xri (t) = xi), i = 1, 2 <latexit sha1_base64="1WQOQ0pEDO0R2MNAChuOSUgf2Lw=">AAACfXicfZDbbhMxEIadLYcSTmm55MYiKkpRCLsVbbmjAi64QRSJtJWyUTTrTDZWfdjasxXRKm/A03ALL8LTgDddJNoiRrL06Z/fHs+fFUp6iuOfrWjtxs1bt9fvtO/eu//gYWdj88jb0gkcCqusO8nAo5IGhyRJ4UnhEHSm8Dg7fVv3j8/ReWnNZ1oUONaQGzmTAihIk87TaY+2U4VnPFU2T6sUVDGHyc6LXvK84WQ7XU463XgQr4pfh6SBLmvqcLLRep1OrSg1GhIKvB8lcUHjChxJoXDZTkuPBYhTyHEU0IBGP65WCy35VlCmfGZdOIb4Sv37RgXa+4XOglMDzf3VXi32M/2v9qik2atxJU1REhpxMWtWKk6W1wHxqXQoSC0CgHAyfJeLOTgQFGK8NKh+m6xVPmzzDsOWDj8E6WOBDsi6ZyFMl2tplmHrPO3X9D8jfPljDNRuh8iTqwFfh6OdQbI32P30snvwpgl/nT1mT1iPJWyfHbD37JANmWBf2Tf2nf1o/Yq2on40uLBGrebOI3apov3f10/C6Q==</latexit> d(t) log{↵2/(1 ↵1)} <latexit sha1_base64="m1K5jhgZ/bhf19q6J/dFBHTxu9g=">AAACfXicfZDdbhMxEIWdLT8l/KXlkhuLqChFIexWtOWOCrjgBlEk0laKo2jWmWys2uutPVsRrfIGPA238CI8DXjTRaItYiRLn84cezwnLbTyFMc/W9HajZu3bq/fad+9d//Bw87G5pG3pZM4lFZbd5KCR61yHJIijSeFQzCpxuP09G3dPz5H55XNP9OiwLGBLFczJYGCNOk8nfZoW2R4xoW2mah6yXMBupjDZGf7RUOJWE463XgQr4pfh6SBLmvqcLLRei2mVpYGc5IavB8lcUHjChwpqXHZFqXHAuQpZDgKmINBP65WCy35VlCmfGZdODnxlfr3jQqM9wuTBqcBmvurvVrsp+Zf7VFJs1fjSuVFSZjLi1mzUnOyvA6IT5VDSXoRAKRT4btczsGBpBDjpUH122St9mGbdxi2dPghSB8LdEDWPasEuMyofBm2zkS/pv8Z4csfY6B2O0SeXA34OhztDJK9we6nl92DN0346+wxe8J6LGH77IC9Z4dsyCT7yr6x7+xH61e0FfWjwYU1ajV3HrFLFe3/BsaVwuQ=</latexit> d(t) log{(1 ↵2)/↵1 } H2を採択 H1を採択 それ以外なら、検定を続ける <latexit sha1_base64="cLs2iVEUNYf3cskjE5j8cKeGbIQ=">AAACc3icfVDLThtBEBxvAiEOEBOO5LDCiQTIWLtWXjesJIdcIogU20i2teodt82IeaxmeiOslS98DdfwN3xI7pm1HYmX0tJI1dXVM1OVZlI4iqKbSvDk6crqs7Xn1RfrG5sva1uvus7klmOHG2nsaQoOpdDYIUESTzOLoFKJvfT8Sznv/ULrhNE/aZrhUMFEi7HgQJ5Kaq+zpLBJPNu7SOIG7c+7Vtm1fJfU6lEzmlf4EMRLUGfLOkm2KkeDkeG5Qk1cgnP9OMpoWIAlwSXOqoPcYQb8HCbY91CDQjcs5jZm4VvPjMKxsf5oCufs7Y0ClHNTlXqlAjpz92cl2UjVY+N+TuNPw0LoLCfUfPHWOJchmbCMJRwJi5zk1APgVvjvhvwMLHDy4d15qLybjJHOu/mK3qXF7546ztACGXtQDMBOlNAz73oyaJTof0K4+Cf0qFr1kcf3A34Iuq1m/KH5/se7evvzMvw1tsN22R6L2UfWZt/YCeswzi7ZFfvNrit/gp1gN3izkAaV5c42u1PB4V8+lb8T</latexit> pr1 (x1, t)pr2 (x2, t) <latexit sha1_base64="JHzZSVZ8g1xkA6skk823qmFkyJE=">AAACc3icfVDLThtBEBxvAiEOEBOO5LDCiQTIWLtWXjesJIdcIogU20i2teodt82IeaxmeiOslS98DdfwN3xI7pm1HYmX0tJI1dXVM1OVZlI4iqKbSvDk6crqs7Xn1RfrG5sva1uvus7klmOHG2nsaQoOpdDYIUESTzOLoFKJvfT8Sznv/ULrhNE/aZrhUMFEi7HgQJ5Kaq+zpLBJa7Z3kcQN2p93cdm1fJfU6lEzmlf4EMRLUGfLOkm2KkeDkeG5Qk1cgnP9OMpoWIAlwSXOqoPcYQb8HCbY91CDQjcs5jZm4VvPjMKxsf5oCufs7Y0ClHNTlXqlAjpz92cl2UjVY+N+TuNPw0LoLCfUfPHWOJchmbCMJRwJi5zk1APgVvjvhvwMLHDy4d15qLybjJHOu/mK3qXF7546ztACGXtQDMBOlNAz73oyaJTof0K4+Cf0qFr1kcf3A34Iuq1m/KH5/se7evvzMvw1tsN22R6L2UfWZt/YCeswzi7ZFfvNrit/gp1gN3izkAaV5c42u1PB4V8+o78T</latexit> pr2 (x1, t)pr1 (x2, t) <latexit sha1_base64="q7CkWI80aiNYArX32JfPwg1xQxs=">AAAClHicfVDbahRBEO2deInrbRPBF18aF2Ej2WVm8ZIHg8Eo+KJGcJPAzjD09NRMmvRl6K4Juwz7NX6Nr/rk39izWSEXsaDpU6dOdXWdrJLCYRj+7gRrN27eur1+p3v33v0HD3sbm4fO1JbDhBtp7HHGHEihYYICJRxXFpjKJBxlp/tt/egMrBNGf8N5BYlipRaF4Aw9lfZ28wFu7dLpLB17MJylkb+SWJoyzgvLeBMNY5hVg6FNI9xaXEjHPk17/XAULoNeB9EK9MkqDtKNzts4N7xWoJFL5tw0CitMGmZRcAmLblw7qBg/ZSVMPdRMgUua5Z4L+swzOS2M9UcjXbIXOxqmnJurzCsVwxN3tdaS25n6V3laY7GTNEJXNYLm57OKWlI0tPWN5sICRzn3gHEr/HcpP2HeIfTuXhrUvo3GSOe3eQ9+SwufPPWlAsvQ2OdNzGyphF74rct4u0X/E7LZX6FH3a63PLpq8HVwOB5Fr0Yvv77o771bmb9OnpCnZEAi8prskY/kgEwIJ9/JD/KT/AoeB2+C/eDDuTTorHoekUsRfP4D5r3Jvw==</latexit> d(t) = [x2(t) x1(t)] log 1 exp( r1t) 1 exp( r2t) <latexit sha1_base64="bEBy+0ErgV3JLFbMr9e+2xAa30I=">AAACs3icfZBdb9MwFIbd8DXCxzq45MaiYmpRWiWIATcTE3DBDWJIdKvUdJHjnGbW7DjYJ6hVlD/Hv+AfcAu/AKdrpX0gjmTp0XveY/u8aSmFxTD82fFu3Lx1+87WXf/e/QcPt7s7j46srgyHMddSm0nKLEhRwBgFSpiUBphKJRynZ+/b/vF3MFbo4isuS5gplhdiLjhDJyXdeLdM6li6gYwlUdNfBDig+xRO6uFGFRSbfjS8IDlhcFIvhlET0Dj2dzHO4RsNA7rYwKQfDvajpNsLR+Gq6HWI1tAj6zpMdjpv40zzSkGBXDJrp1FY4qxmBgWX0PhxZaFk/IzlMHVYMAV2Vq9iaOgzp2R0ro07BdKVenGiZsrapUqdUzE8tVd7rRik6l/taYXzN7NaFGWFUPDzt+aVpKhpGyvNhAGOcumAcSPcdyk/ZYZxdOFfeqi9G7WW1m3zAdyWBj456XMJhqE2z+uYmVyJonFb53HQ0v+MbLExOvJ9F3l0NeDrcPRiFL0a7X152Tt4tw5/izwhT0mfROQ1OSAfySEZE05+kF/kN/nj7XlTL/Wyc6vXWc88JpfKU38Bc1bUFA==</latexit> p 1 (x, t) = e it(1 e t)x 1, t 0, x 0, X(0) = 1 単純出⽣過程