Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
感染症の数理モデル11
Search
Daisuke Yoneoka
February 20, 2025
Research
0
25
感染症の数理モデル11
Daisuke Yoneoka
February 20, 2025
Tweet
Share
More Decks by Daisuke Yoneoka
See All by Daisuke Yoneoka
感染症の数理セミナー_10_.pdf
kingqwert
0
48
感染症の数理モデル9
kingqwert
0
48
感染症の数理モデル8
kingqwert
0
48
感染症の数理モデル7
kingqwert
0
62
感染症の数理モデル6
kingqwert
0
72
感染症の数理モデル5
kingqwert
0
74
感染症の数理モデル4
kingqwert
0
120
感染症の数理モデル3
kingqwert
0
130
感染症の数理モデル2
kingqwert
0
140
Other Decks in Research
See All in Research
o1 pro mode の調査レポート
smorce
0
110
JSAI NeurIPS 2024 参加報告会(AI アライメント)
akifumi_wachi
5
820
渋谷Well-beingアンケート調査結果
shibuyasmartcityassociation
0
400
A Segment Anything Model based weakly supervised learning method for crop mapping using Sentinel-2 time series images
satai
2
130
2038年問題が思ったよりヤバい。検出ツールを作って脅威性評価してみた論文 | Kansai Open Forum 2024
ran350
8
3.8k
第79回 産総研人工知能セミナー 発表資料
agiats
3
200
SpectralMamba: Efficient Mamba for Hyperspectral Image Classification
satai
2
150
Weekly AI Agents News! 12月号 論文のアーカイブ
masatoto
0
190
リモートワークにおけるパッシブ疲労
matsumoto_r
PRO
6
4.9k
複数データセットを用いた動作認識
yuyay
0
110
メールからの名刺情報抽出におけるLLM活用 / Use of LLM in extracting business card information from e-mails
sansan_randd
2
410
Practical The One Person Framework
asonas
1
2.1k
Featured
See All Featured
Fireside Chat
paigeccino
34
3.2k
Six Lessons from altMBA
skipperchong
27
3.6k
Building a Modern Day E-commerce SEO Strategy
aleyda
38
7.1k
Bash Introduction
62gerente
611
210k
Optimizing for Happiness
mojombo
376
70k
Bootstrapping a Software Product
garrettdimon
PRO
306
110k
A designer walks into a library…
pauljervisheath
205
24k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
12
960
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
174
51k
BBQ
matthewcrist
87
9.5k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
100
18k
Testing 201, or: Great Expectations
jmmastey
42
7.2k
Transcript
感染症の数理 セミナー(11) Jan 17, 2025 @NIID 国立感染症研究所 第12室長 米岡 大輔
目次 1. 感染症のコンパートメントモデル 2. 基本再生産数 3. 最終流行規模 4. R実装 5.
人口の異質性とSIR 6. 再生産方程式とエボラ vs インフル 7. R 0 の推定方法(流行初期) 8. 内的増殖率の検定 9. Effective distance 10. 分岐過程 (Branching process) 11. 大規模流行確率と水際対策 12. Backcalculation 13. 致死率の計算 14. (シンプルな)ワクチン接種の自然史と流行条件 本書の内容をカバーします。 具体的なコードなどは右の本 詳細なプログラムなどは https://github.com/objornstad/epimdr/tree/ master/rcode (結構間違ってる。。。) 2/48
はじめに 本セミナーシリーズは数理重めです。 簡単な微分/積分、線形代数が出てきます。 なるべく平易に解説しますが、完全に数学アレルギーの方はここ で終わられることをおすすめします。 セミナー終了時にはある程度次のパンデミックに向けて、 (ある程度) 数理モデリングができるようになることを目標としてます。 自由参加なので、もし無理そうならお気軽に休んでください。 3/20
ワクチンの自然史(麻疹) • 麻疹が定常(or 平衡)状態にある場合 ≒ 時間と感染者数が独立 • M歳まで母親からの移行抗体、V年でワクチン接種、A年で自然感染、L歳まで生きる • Aは全く感染せずに経過、Bはワクチン接種群(割合p)、Cは自然感染群
70
パラメタライズ • m : 母親からの移行抗体によって免疫を保持する期間(6 か月) • s : 母体からの免疫が消失してから死亡するまでの感受性を有する
期間 • sv :ワクチン接種までの感受性期間 • v :ワクチン接種後から死亡するまでの免疫保持期間 • si : 自然感染までの感受性期間, • l : 非感染性期間(感染した後に他者に感染させる能力を持たない 期間) • i : 感染性期間(他者に感染させる能力を有する期間) • r : 自然感染から回復してから死亡するまでの免疫保持期間 71 t si は M から A までの時間であることに注意
定常状態においては • ワクチン接種(割合p)による集団的効果を考える • 定常状態は2つ。まずは自明な感染者が0の場合 • 麻疹患者が一定数いる定常状態。 • 仮定1: 左図Aはほとんど0とする。
• 仮定2: 自然感染をする人はワクチン接種をしない 72 ワクチン接種群 (左図B) ワクチン非接種群 (左図A) Memo: 一瞬 t sv /Lは2つ目の式にいらないの か?と思うが、仮定2よりそういう人はいない
流行条件の導出 • ランダムな接触を仮定すると、一人の感染者あたり 人の感染者 → 定常状態なので 、もっと言うと も も定数 •
自然感染の平均年齢は(A 0 はワクチン非接種群の自然感染の平均年齢) • 感染症を根絶したいなら以下の状態を目指す(前のスライドで、感染者0の定常状態) 73 以下に代入して 定数であることが確認できる ワクチン接種率pとは無関係! R0は変えられないとすると、 この右辺の値を小さくしていく ことが感染症の根絶につながる つまり、オレンジが青より小さければ良い → これが目指すべきワクチン接種率 面白い式:ワクチン接種割合 が高くなるにつれ, 自然感染 を経験する平均年齢が上昇す る傾向にある
免疫を有する者がいる人口への流入 • 現実に平衡状態にある感染症なんてないよね。 • 多くは「他地域からの流入」と「地域内根絶」を繰り返して流行の波ができている • 流行開始前の免疫を有する者の割合を • 流行が繰り返される主要因は、感受性を持つ割合 が平衡状態の感受性割合
より少し大きくなること • 最終規模(一つの流行を通じて観察される感染者の割合)を • また、(一人が)流行中に感染する確率は (第4回プレゼン(次のスライド再掲)を参照) • 最終規模は (普通よりf s0 だけ小さくなる) 74 fs0 : 一つの流行が終息しても感受性を持 ったままの割合 これを2次のテイラー展開 平衡状態では より この意味:前の感受性宿主の割合f s0 が、平衡状態の感受性宿主 の割合f s を1%上回る度に、短期的流行(再流行)を通じて感染 する者の割合が2%増える ひとたび流行が下火になっても、感受性を有するものがどれ くらい人口内にいるかを確認することの重要性を示唆 重要な示唆
最終流行規模 (Final epidemic size) もうちょっと現実的に人口あたりで考える SIRには2つの均衡点 (s, i, r) =
(1, 0 , 0)と(s*, 0, r*) 75/20 t→∞としたときに感染者は0人になり、 s* (= s(∞)): 何%が感染を逃れたか r* (= r(∞)): 何%が感染したか 新しい基本再生産数 r*にてつい て解く (解析的には解けないので)数値計算 R0 が大きいとき はr*≒1なので R 0 だけから、最終的な流行規模が見積もれる! 求め方:上の3番目を1番目に代入し て積分するだけ