Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
セミパラメトリック推論の基礎の復習
Search
Daisuke Yoneoka
November 14, 2023
Research
0
54
セミパラメトリック推論の基礎の復習
Daisuke Yoneoka
November 14, 2023
Tweet
Share
More Decks by Daisuke Yoneoka
See All by Daisuke Yoneoka
感染症の数理モデル9
kingqwert
0
29
感染症の数理モデル8
kingqwert
0
31
感染症の数理モデル7
kingqwert
0
46
感染症の数理モデル6
kingqwert
0
55
感染症の数理モデル5
kingqwert
0
53
感染症の数理モデル4
kingqwert
0
100
感染症の数理モデル3
kingqwert
0
110
感染症の数理モデル2
kingqwert
0
120
感染症の数理モデル1
kingqwert
0
220
Other Decks in Research
See All in Research
ソフトウェア研究における脅威モデリング
laysakura
0
1k
Weekly AI Agents News! 8月号 論文のアーカイブ
masatoto
1
230
Poster: Feasibility of Runtime-Neutral Wasm Instrumentation for Edge-Cloud Workload Handover
chikuwait
0
250
CUNY DHI_Lightning Talks_2024
digitalfellow
0
180
国際会議ACL2024参加報告
chemical_tree
1
360
機械学習による言語パフォーマンスの評価
langstat
6
830
リモートワークにおけるパッシブ疲労
matsumoto_r
PRO
6
4.5k
FOSS4G 山陰 Meetup 2024@砂丘 はじめの挨拶
wata909
1
130
129 2 th
0325
0
250
文化が形作る音楽推薦の消費と、その逆
kuri8ive
0
210
The many faces of AI and the role of mathematics
gpeyre
1
1.4k
Weekly AI Agents News! 9月号 プロダクト/ニュースのアーカイブ
masatoto
2
170
Featured
See All Featured
GraphQLとの向き合い方2022年版
quramy
44
13k
RailsConf 2023
tenderlove
29
950
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
127
18k
Adopting Sorbet at Scale
ufuk
74
9.1k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5.1k
The Invisible Side of Design
smashingmag
299
50k
The Language of Interfaces
destraynor
155
24k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
59k
KATA
mclloyd
29
14k
Done Done
chrislema
182
16k
Building a Scalable Design System with Sketch
lauravandoore
460
33k
How to Ace a Technical Interview
jacobian
276
23k
Transcript
ηϛύϥϝτϦοΫਪͷجૅͷ෮श Daisuke Yoneoka September 29, 2014
Notations جຊతʹ Tsiatis,2006 ʹै͏. Θ͔Μͳ͔ͬͨΒࣗͰௐͯͶ! ϕΫτϧߦྻଠࣈʹͯ͠ͳ͍͚Ͳ, ͦࣗ͜Ͱิ͍ͬͯͩ͘͞. σʔλ i.i.d Ͱ
Zi = (Zi1, . . . , Zim) ∈ Rm αϯϓϧαΠζ n ਓ. i.e., Z1, . . . , Zn φ(Z) Өڹؔ u(Zi, θ) ਪఆؔ Լ͖ࣈͷ eff (ۙ) ༗ޮ (efficient) ͱ͍͏ҙຯ
ηϛύϥϝτϦοΫਪͱʁ Zi ͷີ͕ؔηϛύϥϝτϦοΫϞσϧʹै͏ͱ S = {p(z : θ, η)|θ ∈
Θ ⊂ Rr, η ∈ H} θ ༗ݶ࣍ݩͷڵຯ͋ΔύϥϝλͰ, η ແݶ࣍ݩͷͲ͏Ͱ͍͍ύ ϥϝλ (ہ֎ (nuisance) ύϥϝʔλʔ). ηϛύϥϝτϦοΫਪ: ͜ͷͱͰ θ ͷ࠷ྑͷਪఆྔ (RAL ਪఆ ྔ) ΛͱΊΔ͜ͱ
Өڹؔ θ ͳΜͰ͍͍͔Β࠷ྑΛݟ͚ͭΔͱ͍͏ͷແཧήʔ → Ϋϥε Λݶఆͯͦ͜͠Ͱݟ͚ͭΔ! (౷ܭͰΑ͘ΔΑͶ) Өڹؔ: ਪఆྔ ˆ
θ ͷӨڹؔͱ, (Ϟʔϝϯτʹ੍͕͋Δ) √ n(ˆ θ − θ) = 1 √ n n i=1 φ(Zi, θ, η) + op(1) Λຬͨ͢ϕΫτϧؔ. ˆ θ ۙઢܗਪఆྔͱݺͼ n → ∞ ͰҰகੑ ͱۙਖ਼نੑ͕͋Δ √ n(ˆ θ − θ) → N 0, E[φ(Zi, θ, η)φ(Zi, θ, η)T ] Πϝʔδతʹ͋Δσʔλ͕ͲΕ͚ͩਪఆʹӨڹΛ༩͍͑ͯΔ͔Λ දݱͨ͠ͷ
ਪఆؔͱ M ਪఆ ਪఆํఔࣜ n i=1 u(Zi, θ) ਪఆؔ =
0 ͷղͱͯ͠ಘΒΕΔͷΛ M ਪఆྔ ͱݺͿ. Α͘ݟΔ score ؔͳΜ͔ίϨ. ͨͩ͠, E[φ(Zi, θ)] = 0 ظ 0 , E[∥φ(Zi, θ)∥2] < ∞ ࢄతͳͷൃࢄ͠ͳ͍ . ͋ͱ͏গ͚ͩ݅͋͠Δ. Ұகੑͱۙਖ਼نੑΛ࣋ͭ √ n(ˆ θ − θ) = 1 √ n n i=1 E[ ∂u(Zi, θ) ∂θ ] −1 u(Zi, θ) ͕͜͜Өڹؔʹͳ͍ͬͯΔ +op(1) → N 0, E[ ∂u(Zi, θ) ∂θ ] −1 E[u(Zi, θ)u(Zi, θ)T ] E[ ∂u(Zi, θ) ∂θ ] −T ] ͜ͷۙࢄͷਪఆྔΛαϯυΠονਪఆྔͱݺΜͩΓ͢Δ
RAL ਪఆྔ ۙઢܥਪఆྔͳΜ͔ྑͦ͞͏ʂͰ super efficiency ͷ (Hodges) ͕Δʂ Super efficiency:
ۙతʹ Cramer-Rao ͷԼݶΑΓྑ͍ͷ͕Ͱ͖ Δͷ͜ͱ ͜ͷΛղܾͨ͠ͷ͕ RAL (Regular asymptotic linear) ਪఆྔ. ͦͷਖ਼ଇ݅ۃݶ͕ LDGP (local data generating process) ʹґ ଘ͠ͳ͍͜ͱ (ৄ͘͠ Tsiatis, 2006) ηϛύϥਪ͜ͷ RAL ਪఆྔͷӨڹؔΛٻΊΔ͜ͱΛߟ͑Δ
Parametric submodel ηϛύϥϝτϦοΫϞσϧ S ͷ֤ʹର͠ p(z; θ, η) ∈ Ssub
⊂ S Λຬͨ͢ύϥϝτϦοΫϞσϧ Ssub = {p(z; θ, γ)|θ ∈ Θ ⊂ Rr, γ ∈ Γ ⊂ Rs, s ∈ N} ΛύϥϝτϦοΫαϒϞσϧͱݺͿ.
Nuisance tangent space (ہ֎ۭؒ) ηϛύϥϝτϦοΫϞσϧ S ͷ֤ʹର͠, ύϥϝτϦοΫαϒϞσϧ Ssub ͷہ֎ۭؒΛ
TN θ,γ (Ssub) = {BT sγ(z, θ, γ)|B ∈ Rs} ͱ͢Δ. γ p(z; θ, η) ʹରԠ͢ΔͷͰ sγ(z, θ, γ) = ∂ ∂γ log p(z; θ, γ) Ͱ ද͞ΕΔ nuisance score ؔ. ͜ͷઢܗۭؒ͜ͷ nuisance score vector ʹ ΑͬͯுΒΕ͍ͯΔ. ͜ͷͱ͖ TN θ,η (S) = Ssub TN θ,γ (Ssub) Λ S ্ͷ p(z; θ, η) ʹ͓͚Δہ֎ۭؒͱΑͿ. ͪͳΈʹ, ଆͷू ߹ʹؔͯ͠ closure ΛͱΔԋࢉࢠ. Note:͜ͷۭؒେͰޙʹ, RAL ਪఆྔͷӨڹؔ͜ͷۭؒʹަۭͨؒ͠ʹ ଐ͢Δ͜ͱ͕ॏཁʹͳͬͯ͘Δʂ
ઢܗ෦ۭؒͷࣹӨͷزԿͱϐλΰϥεͷఆཧ
RAL ਪఆྔͷӨڹؔͷॏཁͳఆཧ ηϛύϥϝτϦοΫ RAL ਪఆྔ β ͷӨڹؔ φ(Z) ҎԼͷ݅Λຬ ͢Δ.
Corollary1 E[φ(Z)sβ] = E[φ(Z)sT efficient (Z, β0, η0)] = I. ͨͩ͠, s είΞؔͰ, sT efficient ༗ޮείΞؔ Corollary2 φ(Z) ہ֎ۭؒʹަ͍ͯ͠Δ. ༗ޮӨڹ্ؔͷ 2 ͭͷ݅Λຬͨ͠, ͦͷࢄߦྻ, ޮݶքΛୡ ͦ͠Ε φeffi(Z, β0, η0) = E[seff (Z, β0, η0)sT eff (Z, β0, η0)] −1 seff (Z, β0, η0)
ηϛύϥۭؒͷఆཧ ύϥϝτϦοΫαϒϞσϧͷ߹ͷ RAL ਪఆྔͷӨڹؔͱۭؒͱͷؔ Tsiatis, 2006 ͷ Ch4.3 ͋ͨΓΛݟͯͶʂ ఆཧ
1 RAL ਪఆྔͷӨڹؔ {φ(Z) + TN θ,η (S)⊥} ͱ͍͏ۭؒʹؚ·ΕΔ. ͨͩ͠, φ(Z) ҙͷ RAL ਪఆྔͷӨڹؔͰ, TN θ,η (S)⊥ ηϛύϥϝτϦο Ϋۭؒͷަิۭؒ ఆཧ 2 ηϛύϥϝτϦοΫ༗ޮͳਪఆྔ, ͦͷӨڹ͕ؔҰҙʹ well-defined Ͱܾఆ͞ Ε,φefficient = φ(Z) − {φ(Z)|TN θ,η (S)⊥} ͷཁૉ. ͪͳΈʹ, (h|U) projection of h ∈ H(ੵΛಋೖͨ͠ώϧϕϧτۭؒ) onto the space U (ઢܗۭؒ)
GEE ʹ͍ͭͯͷ Remarks Liang-Zeger ͷ GEE ͷηϛύϥϝτϦοΫϞσϧ (੍ϞʔϝϯτϞσϧ: 1 ࣍ͱ
2 ࣍ͷϞʔϝϯτʹ੍͚ͩΛஔ͍ͨϞσϧ) ҎԼͷಛΛͭ. ہॴ (ۙ༗) ޮਪఆྔ: ࢄؔͷԾఆ͕ਖ਼͚͠Ε, ༗ޮਪఆྔ Robustness: ແݶ࣍ݩͷύϥϝʔλਪఆ͕ඞཁ͕ͩ, ࢄؔΛ misspecify ͨ͠ͱͯ͠Ұகੑͱۙਖ਼نੑอ࣋ GEE ͷຊΛಡΊΘ͔Δ͚Ͳ, Working covariance matrix Λؒҧ͑ͯ ༗ޮੑࣦΘΕΔ͕, ͦͷଞͷ·͍͠ੑ࣭ (ۙਖ਼نੑͱҰகੑ) อ࣋Ͱ͖Δͬͯ͜ͱ