Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
セミパラメトリック推論の基礎の復習
Search
Daisuke Yoneoka
November 14, 2023
Research
0
100
セミパラメトリック推論の基礎の復習
Daisuke Yoneoka
November 14, 2023
Tweet
Share
More Decks by Daisuke Yoneoka
See All by Daisuke Yoneoka
感染症の数理モデル14
kingqwert
0
96
感染症の数理モデル13
kingqwert
0
31
感染症の数理モデル12
kingqwert
0
99
感染症の数理モデル11
kingqwert
0
100
感染症の数理セミナー_10_.pdf
kingqwert
0
110
感染症の数理モデル9
kingqwert
0
91
感染症の数理モデル8
kingqwert
0
96
感染症の数理モデル7
kingqwert
0
100
感染症の数理モデル6
kingqwert
0
130
Other Decks in Research
See All in Research
Creation and environmental applications of 15-year daily inundation and vegetation maps for Siberia by integrating satellite and meteorological datasets
satai
3
390
J-RAGBench: 日本語RAGにおける Generator評価ベンチマークの構築
koki_itai
0
720
論文紹介:Not All Tokens Are What You Need for Pretraining
kosuken
0
200
音声感情認識技術の進展と展望
nagase
0
250
とあるSREの博士「過程」 / A Certain SRE’s Ph.D. Journey
yuukit
11
4.4k
Hiding What from Whom? A Critical Review of the History of Programming languages for Music
tomoyanonymous
0
200
Towards a More Efficient Reasoning LLM: AIMO2 Solution Summary and Introduction to Fast-Math Models
analokmaus
2
900
EarthSynth: Generating Informative Earth Observation with Diffusion Models
satai
3
370
財務諸表監査のための逐次検定
masakat0
0
140
まずはここから:Overleaf共同執筆・CopilotでAIコーディング入門・Codespacesで独立環境
matsui_528
2
610
[輪講] SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features
nk35jk
3
1.2k
一人称視点映像解析の最先端(MIRU2025 チュートリアル)
takumayagi
6
3.8k
Featured
See All Featured
Done Done
chrislema
185
16k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.6k
The World Runs on Bad Software
bkeepers
PRO
72
11k
How GitHub (no longer) Works
holman
315
140k
Faster Mobile Websites
deanohume
310
31k
Scaling GitHub
holman
463
140k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
The Invisible Side of Design
smashingmag
302
51k
Leading Effective Engineering Teams in the AI Era
addyosmani
3
340
jQuery: Nuts, Bolts and Bling
dougneiner
65
7.9k
Making the Leap to Tech Lead
cromwellryan
135
9.6k
Transcript
ηϛύϥϝτϦοΫਪͷجૅͷ෮श Daisuke Yoneoka September 29, 2014
Notations جຊతʹ Tsiatis,2006 ʹै͏. Θ͔Μͳ͔ͬͨΒࣗͰௐͯͶ! ϕΫτϧߦྻଠࣈʹͯ͠ͳ͍͚Ͳ, ͦࣗ͜Ͱิ͍ͬͯͩ͘͞. σʔλ i.i.d Ͱ
Zi = (Zi1, . . . , Zim) ∈ Rm αϯϓϧαΠζ n ਓ. i.e., Z1, . . . , Zn φ(Z) Өڹؔ u(Zi, θ) ਪఆؔ Լ͖ࣈͷ eff (ۙ) ༗ޮ (efficient) ͱ͍͏ҙຯ
ηϛύϥϝτϦοΫਪͱʁ Zi ͷີ͕ؔηϛύϥϝτϦοΫϞσϧʹै͏ͱ S = {p(z : θ, η)|θ ∈
Θ ⊂ Rr, η ∈ H} θ ༗ݶ࣍ݩͷڵຯ͋ΔύϥϝλͰ, η ແݶ࣍ݩͷͲ͏Ͱ͍͍ύ ϥϝλ (ہ֎ (nuisance) ύϥϝʔλʔ). ηϛύϥϝτϦοΫਪ: ͜ͷͱͰ θ ͷ࠷ྑͷਪఆྔ (RAL ਪఆ ྔ) ΛͱΊΔ͜ͱ
Өڹؔ θ ͳΜͰ͍͍͔Β࠷ྑΛݟ͚ͭΔͱ͍͏ͷແཧήʔ → Ϋϥε Λݶఆͯͦ͜͠Ͱݟ͚ͭΔ! (౷ܭͰΑ͘ΔΑͶ) Өڹؔ: ਪఆྔ ˆ
θ ͷӨڹؔͱ, (Ϟʔϝϯτʹ੍͕͋Δ) √ n(ˆ θ − θ) = 1 √ n n i=1 φ(Zi, θ, η) + op(1) Λຬͨ͢ϕΫτϧؔ. ˆ θ ۙઢܗਪఆྔͱݺͼ n → ∞ ͰҰகੑ ͱۙਖ਼نੑ͕͋Δ √ n(ˆ θ − θ) → N 0, E[φ(Zi, θ, η)φ(Zi, θ, η)T ] Πϝʔδతʹ͋Δσʔλ͕ͲΕ͚ͩਪఆʹӨڹΛ༩͍͑ͯΔ͔Λ දݱͨ͠ͷ
ਪఆؔͱ M ਪఆ ਪఆํఔࣜ n i=1 u(Zi, θ) ਪఆؔ =
0 ͷղͱͯ͠ಘΒΕΔͷΛ M ਪఆྔ ͱݺͿ. Α͘ݟΔ score ؔͳΜ͔ίϨ. ͨͩ͠, E[φ(Zi, θ)] = 0 ظ 0 , E[∥φ(Zi, θ)∥2] < ∞ ࢄతͳͷൃࢄ͠ͳ͍ . ͋ͱ͏গ͚ͩ݅͋͠Δ. Ұகੑͱۙਖ਼نੑΛ࣋ͭ √ n(ˆ θ − θ) = 1 √ n n i=1 E[ ∂u(Zi, θ) ∂θ ] −1 u(Zi, θ) ͕͜͜Өڹؔʹͳ͍ͬͯΔ +op(1) → N 0, E[ ∂u(Zi, θ) ∂θ ] −1 E[u(Zi, θ)u(Zi, θ)T ] E[ ∂u(Zi, θ) ∂θ ] −T ] ͜ͷۙࢄͷਪఆྔΛαϯυΠονਪఆྔͱݺΜͩΓ͢Δ
RAL ਪఆྔ ۙઢܥਪఆྔͳΜ͔ྑͦ͞͏ʂͰ super efficiency ͷ (Hodges) ͕Δʂ Super efficiency:
ۙతʹ Cramer-Rao ͷԼݶΑΓྑ͍ͷ͕Ͱ͖ Δͷ͜ͱ ͜ͷΛղܾͨ͠ͷ͕ RAL (Regular asymptotic linear) ਪఆྔ. ͦͷਖ਼ଇ݅ۃݶ͕ LDGP (local data generating process) ʹґ ଘ͠ͳ͍͜ͱ (ৄ͘͠ Tsiatis, 2006) ηϛύϥਪ͜ͷ RAL ਪఆྔͷӨڹؔΛٻΊΔ͜ͱΛߟ͑Δ
Parametric submodel ηϛύϥϝτϦοΫϞσϧ S ͷ֤ʹର͠ p(z; θ, η) ∈ Ssub
⊂ S Λຬͨ͢ύϥϝτϦοΫϞσϧ Ssub = {p(z; θ, γ)|θ ∈ Θ ⊂ Rr, γ ∈ Γ ⊂ Rs, s ∈ N} ΛύϥϝτϦοΫαϒϞσϧͱݺͿ.
Nuisance tangent space (ہ֎ۭؒ) ηϛύϥϝτϦοΫϞσϧ S ͷ֤ʹର͠, ύϥϝτϦοΫαϒϞσϧ Ssub ͷہ֎ۭؒΛ
TN θ,γ (Ssub) = {BT sγ(z, θ, γ)|B ∈ Rs} ͱ͢Δ. γ p(z; θ, η) ʹରԠ͢ΔͷͰ sγ(z, θ, γ) = ∂ ∂γ log p(z; θ, γ) Ͱ ද͞ΕΔ nuisance score ؔ. ͜ͷઢܗۭؒ͜ͷ nuisance score vector ʹ ΑͬͯுΒΕ͍ͯΔ. ͜ͷͱ͖ TN θ,η (S) = Ssub TN θ,γ (Ssub) Λ S ্ͷ p(z; θ, η) ʹ͓͚Δہ֎ۭؒͱΑͿ. ͪͳΈʹ, ଆͷू ߹ʹؔͯ͠ closure ΛͱΔԋࢉࢠ. Note:͜ͷۭؒେͰޙʹ, RAL ਪఆྔͷӨڹؔ͜ͷۭؒʹަۭͨؒ͠ʹ ଐ͢Δ͜ͱ͕ॏཁʹͳͬͯ͘Δʂ
ઢܗ෦ۭؒͷࣹӨͷزԿͱϐλΰϥεͷఆཧ
RAL ਪఆྔͷӨڹؔͷॏཁͳఆཧ ηϛύϥϝτϦοΫ RAL ਪఆྔ β ͷӨڹؔ φ(Z) ҎԼͷ݅Λຬ ͢Δ.
Corollary1 E[φ(Z)sβ] = E[φ(Z)sT efficient (Z, β0, η0)] = I. ͨͩ͠, s είΞؔͰ, sT efficient ༗ޮείΞؔ Corollary2 φ(Z) ہ֎ۭؒʹަ͍ͯ͠Δ. ༗ޮӨڹ্ؔͷ 2 ͭͷ݅Λຬͨ͠, ͦͷࢄߦྻ, ޮݶքΛୡ ͦ͠Ε φeffi(Z, β0, η0) = E[seff (Z, β0, η0)sT eff (Z, β0, η0)] −1 seff (Z, β0, η0)
ηϛύϥۭؒͷఆཧ ύϥϝτϦοΫαϒϞσϧͷ߹ͷ RAL ਪఆྔͷӨڹؔͱۭؒͱͷؔ Tsiatis, 2006 ͷ Ch4.3 ͋ͨΓΛݟͯͶʂ ఆཧ
1 RAL ਪఆྔͷӨڹؔ {φ(Z) + TN θ,η (S)⊥} ͱ͍͏ۭؒʹؚ·ΕΔ. ͨͩ͠, φ(Z) ҙͷ RAL ਪఆྔͷӨڹؔͰ, TN θ,η (S)⊥ ηϛύϥϝτϦο Ϋۭؒͷަิۭؒ ఆཧ 2 ηϛύϥϝτϦοΫ༗ޮͳਪఆྔ, ͦͷӨڹ͕ؔҰҙʹ well-defined Ͱܾఆ͞ Ε,φefficient = φ(Z) − {φ(Z)|TN θ,η (S)⊥} ͷཁૉ. ͪͳΈʹ, (h|U) projection of h ∈ H(ੵΛಋೖͨ͠ώϧϕϧτۭؒ) onto the space U (ઢܗۭؒ)
GEE ʹ͍ͭͯͷ Remarks Liang-Zeger ͷ GEE ͷηϛύϥϝτϦοΫϞσϧ (੍ϞʔϝϯτϞσϧ: 1 ࣍ͱ
2 ࣍ͷϞʔϝϯτʹ੍͚ͩΛஔ͍ͨϞσϧ) ҎԼͷಛΛͭ. ہॴ (ۙ༗) ޮਪఆྔ: ࢄؔͷԾఆ͕ਖ਼͚͠Ε, ༗ޮਪఆྔ Robustness: ແݶ࣍ݩͷύϥϝʔλਪఆ͕ඞཁ͕ͩ, ࢄؔΛ misspecify ͨ͠ͱͯ͠Ұகੑͱۙਖ਼نੑอ࣋ GEE ͷຊΛಡΊΘ͔Δ͚Ͳ, Working covariance matrix Λؒҧ͑ͯ ༗ޮੑࣦΘΕΔ͕, ͦͷଞͷ·͍͠ੑ࣭ (ۙਖ਼نੑͱҰகੑ) อ࣋Ͱ͖Δͬͯ͜ͱ