Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
セミパラメトリック推論の基礎の復習
Search
Daisuke Yoneoka
November 14, 2023
Research
0
47
セミパラメトリック推論の基礎の復習
Daisuke Yoneoka
November 14, 2023
Tweet
Share
More Decks by Daisuke Yoneoka
See All by Daisuke Yoneoka
感染症の数理モデル9
kingqwert
0
7
感染症の数理モデル8
kingqwert
0
18
感染症の数理モデル7
kingqwert
0
38
感染症の数理モデル6
kingqwert
0
39
感染症の数理モデル5
kingqwert
0
42
感染症の数理モデル4
kingqwert
0
94
感染症の数理モデル3
kingqwert
0
92
感染症の数理モデル2
kingqwert
0
110
感染症の数理モデル1
kingqwert
0
190
Other Decks in Research
See All in Research
授業評価アンケートのテキストマイニング
langstat
1
360
12
0325
0
130
Kaggle役立ちアイテム紹介(入門編)
k951286
13
4.5k
20240710_熊本県議会・熊本市議会_都市交通勉強会
trafficbrain
0
780
Weekly AI Agents News!
masatoto
24
23k
Weekly AI Agents News! 10月号 論文のアーカイブ
masatoto
1
170
「確率的なオウム」にできること、またそれがなぜできるのかについて
eumesy
PRO
7
3k
MetricSifter:クラウドアプリケーションにおける故障箇所特定の効率化のための多変量時系列データの特徴量削減 / FIT 2024
yuukit
2
110
Weekly AI Agents News! 7月号 プロダクト/ニュースのアーカイブ
masatoto
0
150
外積やロドリゲスの回転公式を利用した点群の回転
kentaitakura
1
630
さんかくのテスト.pdf
sankaku0724
0
280
Practical The One Person Framework
asonas
1
1.5k
Featured
See All Featured
The Art of Programming - Codeland 2020
erikaheidi
51
13k
Put a Button on it: Removing Barriers to Going Fast.
kastner
59
3.5k
What's new in Ruby 2.0
geeforr
343
31k
YesSQL, Process and Tooling at Scale
rocio
167
14k
What's in a price? How to price your products and services
michaelherold
243
12k
GraphQLの誤解/rethinking-graphql
sonatard
67
10k
Building Your Own Lightsaber
phodgson
102
6.1k
4 Signs Your Business is Dying
shpigford
180
21k
RailsConf 2023
tenderlove
29
880
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
131
33k
Designing for humans not robots
tammielis
249
25k
GitHub's CSS Performance
jonrohan
1030
460k
Transcript
ηϛύϥϝτϦοΫਪͷجૅͷ෮श Daisuke Yoneoka September 29, 2014
Notations جຊతʹ Tsiatis,2006 ʹै͏. Θ͔Μͳ͔ͬͨΒࣗͰௐͯͶ! ϕΫτϧߦྻଠࣈʹͯ͠ͳ͍͚Ͳ, ͦࣗ͜Ͱิ͍ͬͯͩ͘͞. σʔλ i.i.d Ͱ
Zi = (Zi1, . . . , Zim) ∈ Rm αϯϓϧαΠζ n ਓ. i.e., Z1, . . . , Zn φ(Z) Өڹؔ u(Zi, θ) ਪఆؔ Լ͖ࣈͷ eff (ۙ) ༗ޮ (efficient) ͱ͍͏ҙຯ
ηϛύϥϝτϦοΫਪͱʁ Zi ͷີ͕ؔηϛύϥϝτϦοΫϞσϧʹै͏ͱ S = {p(z : θ, η)|θ ∈
Θ ⊂ Rr, η ∈ H} θ ༗ݶ࣍ݩͷڵຯ͋ΔύϥϝλͰ, η ແݶ࣍ݩͷͲ͏Ͱ͍͍ύ ϥϝλ (ہ֎ (nuisance) ύϥϝʔλʔ). ηϛύϥϝτϦοΫਪ: ͜ͷͱͰ θ ͷ࠷ྑͷਪఆྔ (RAL ਪఆ ྔ) ΛͱΊΔ͜ͱ
Өڹؔ θ ͳΜͰ͍͍͔Β࠷ྑΛݟ͚ͭΔͱ͍͏ͷແཧήʔ → Ϋϥε Λݶఆͯͦ͜͠Ͱݟ͚ͭΔ! (౷ܭͰΑ͘ΔΑͶ) Өڹؔ: ਪఆྔ ˆ
θ ͷӨڹؔͱ, (Ϟʔϝϯτʹ੍͕͋Δ) √ n(ˆ θ − θ) = 1 √ n n i=1 φ(Zi, θ, η) + op(1) Λຬͨ͢ϕΫτϧؔ. ˆ θ ۙઢܗਪఆྔͱݺͼ n → ∞ ͰҰகੑ ͱۙਖ਼نੑ͕͋Δ √ n(ˆ θ − θ) → N 0, E[φ(Zi, θ, η)φ(Zi, θ, η)T ] Πϝʔδతʹ͋Δσʔλ͕ͲΕ͚ͩਪఆʹӨڹΛ༩͍͑ͯΔ͔Λ දݱͨ͠ͷ
ਪఆؔͱ M ਪఆ ਪఆํఔࣜ n i=1 u(Zi, θ) ਪఆؔ =
0 ͷղͱͯ͠ಘΒΕΔͷΛ M ਪఆྔ ͱݺͿ. Α͘ݟΔ score ؔͳΜ͔ίϨ. ͨͩ͠, E[φ(Zi, θ)] = 0 ظ 0 , E[∥φ(Zi, θ)∥2] < ∞ ࢄతͳͷൃࢄ͠ͳ͍ . ͋ͱ͏গ͚ͩ݅͋͠Δ. Ұகੑͱۙਖ਼نੑΛ࣋ͭ √ n(ˆ θ − θ) = 1 √ n n i=1 E[ ∂u(Zi, θ) ∂θ ] −1 u(Zi, θ) ͕͜͜Өڹؔʹͳ͍ͬͯΔ +op(1) → N 0, E[ ∂u(Zi, θ) ∂θ ] −1 E[u(Zi, θ)u(Zi, θ)T ] E[ ∂u(Zi, θ) ∂θ ] −T ] ͜ͷۙࢄͷਪఆྔΛαϯυΠονਪఆྔͱݺΜͩΓ͢Δ
RAL ਪఆྔ ۙઢܥਪఆྔͳΜ͔ྑͦ͞͏ʂͰ super efficiency ͷ (Hodges) ͕Δʂ Super efficiency:
ۙతʹ Cramer-Rao ͷԼݶΑΓྑ͍ͷ͕Ͱ͖ Δͷ͜ͱ ͜ͷΛղܾͨ͠ͷ͕ RAL (Regular asymptotic linear) ਪఆྔ. ͦͷਖ਼ଇ݅ۃݶ͕ LDGP (local data generating process) ʹґ ଘ͠ͳ͍͜ͱ (ৄ͘͠ Tsiatis, 2006) ηϛύϥਪ͜ͷ RAL ਪఆྔͷӨڹؔΛٻΊΔ͜ͱΛߟ͑Δ
Parametric submodel ηϛύϥϝτϦοΫϞσϧ S ͷ֤ʹର͠ p(z; θ, η) ∈ Ssub
⊂ S Λຬͨ͢ύϥϝτϦοΫϞσϧ Ssub = {p(z; θ, γ)|θ ∈ Θ ⊂ Rr, γ ∈ Γ ⊂ Rs, s ∈ N} ΛύϥϝτϦοΫαϒϞσϧͱݺͿ.
Nuisance tangent space (ہ֎ۭؒ) ηϛύϥϝτϦοΫϞσϧ S ͷ֤ʹର͠, ύϥϝτϦοΫαϒϞσϧ Ssub ͷہ֎ۭؒΛ
TN θ,γ (Ssub) = {BT sγ(z, θ, γ)|B ∈ Rs} ͱ͢Δ. γ p(z; θ, η) ʹରԠ͢ΔͷͰ sγ(z, θ, γ) = ∂ ∂γ log p(z; θ, γ) Ͱ ද͞ΕΔ nuisance score ؔ. ͜ͷઢܗۭؒ͜ͷ nuisance score vector ʹ ΑͬͯுΒΕ͍ͯΔ. ͜ͷͱ͖ TN θ,η (S) = Ssub TN θ,γ (Ssub) Λ S ্ͷ p(z; θ, η) ʹ͓͚Δہ֎ۭؒͱΑͿ. ͪͳΈʹ, ଆͷू ߹ʹؔͯ͠ closure ΛͱΔԋࢉࢠ. Note:͜ͷۭؒେͰޙʹ, RAL ਪఆྔͷӨڹؔ͜ͷۭؒʹަۭͨؒ͠ʹ ଐ͢Δ͜ͱ͕ॏཁʹͳͬͯ͘Δʂ
ઢܗ෦ۭؒͷࣹӨͷزԿͱϐλΰϥεͷఆཧ
RAL ਪఆྔͷӨڹؔͷॏཁͳఆཧ ηϛύϥϝτϦοΫ RAL ਪఆྔ β ͷӨڹؔ φ(Z) ҎԼͷ݅Λຬ ͢Δ.
Corollary1 E[φ(Z)sβ] = E[φ(Z)sT efficient (Z, β0, η0)] = I. ͨͩ͠, s είΞؔͰ, sT efficient ༗ޮείΞؔ Corollary2 φ(Z) ہ֎ۭؒʹަ͍ͯ͠Δ. ༗ޮӨڹ্ؔͷ 2 ͭͷ݅Λຬͨ͠, ͦͷࢄߦྻ, ޮݶքΛୡ ͦ͠Ε φeffi(Z, β0, η0) = E[seff (Z, β0, η0)sT eff (Z, β0, η0)] −1 seff (Z, β0, η0)
ηϛύϥۭؒͷఆཧ ύϥϝτϦοΫαϒϞσϧͷ߹ͷ RAL ਪఆྔͷӨڹؔͱۭؒͱͷؔ Tsiatis, 2006 ͷ Ch4.3 ͋ͨΓΛݟͯͶʂ ఆཧ
1 RAL ਪఆྔͷӨڹؔ {φ(Z) + TN θ,η (S)⊥} ͱ͍͏ۭؒʹؚ·ΕΔ. ͨͩ͠, φ(Z) ҙͷ RAL ਪఆྔͷӨڹؔͰ, TN θ,η (S)⊥ ηϛύϥϝτϦο Ϋۭؒͷަิۭؒ ఆཧ 2 ηϛύϥϝτϦοΫ༗ޮͳਪఆྔ, ͦͷӨڹ͕ؔҰҙʹ well-defined Ͱܾఆ͞ Ε,φefficient = φ(Z) − {φ(Z)|TN θ,η (S)⊥} ͷཁૉ. ͪͳΈʹ, (h|U) projection of h ∈ H(ੵΛಋೖͨ͠ώϧϕϧτۭؒ) onto the space U (ઢܗۭؒ)
GEE ʹ͍ͭͯͷ Remarks Liang-Zeger ͷ GEE ͷηϛύϥϝτϦοΫϞσϧ (੍ϞʔϝϯτϞσϧ: 1 ࣍ͱ
2 ࣍ͷϞʔϝϯτʹ੍͚ͩΛஔ͍ͨϞσϧ) ҎԼͷಛΛͭ. ہॴ (ۙ༗) ޮਪఆྔ: ࢄؔͷԾఆ͕ਖ਼͚͠Ε, ༗ޮਪఆྔ Robustness: ແݶ࣍ݩͷύϥϝʔλਪఆ͕ඞཁ͕ͩ, ࢄؔΛ misspecify ͨ͠ͱͯ͠Ұகੑͱۙਖ਼نੑอ࣋ GEE ͷຊΛಡΊΘ͔Δ͚Ͳ, Working covariance matrix Λؒҧ͑ͯ ༗ޮੑࣦΘΕΔ͕, ͦͷଞͷ·͍͠ੑ࣭ (ۙਖ਼نੑͱҰகੑ) อ࣋Ͱ͖Δͬͯ͜ͱ