Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ChatGPTなどの言語モデルは どのようにシステムで使えるか / How to use LL...
Search
Naoki Kishida
June 14, 2023
Programming
4
1.6k
ChatGPTなどの言語モデルは どのようにシステムで使えるか / How to use LLM in System
2023/6/14に開催されたFukuoka Integration Xでの登壇資料です
https://fix.connpass.com/event/283871/
Naoki Kishida
June 14, 2023
Tweet
Share
More Decks by Naoki Kishida
See All by Naoki Kishida
Current States of Java Web Frameworks at JCConf 2025
kishida
0
1.4k
AIを活用し、今後に備えるための技術知識 / Basic Knowledge to Utilize AI
kishida
24
6.7k
LLMベースAIの基本 / basics of LLM based AI
kishida
13
3.4k
Java 24まとめ / Java 24 summary
kishida
3
790
AI時代のプログラミング教育 / programming education in ai era
kishida
25
26k
Java Webフレームワークの現状 / java web framework at burikaigi
kishida
10
2.6k
AI時代に求められるプログラマの能力 / ability of programmer in AI era
kishida
19
13k
Java 23の概要とJava Web Frameworkの現状 / Java 23 and Java web framework
kishida
2
560
Java Webフレームワークの現状 / java web framework
kishida
10
11k
Other Decks in Programming
See All in Programming
contribution to astral-sh/uv
shunsock
0
550
Devoxx BE - Local Development in the AI Era
kdubois
0
140
O Que É e Como Funciona o PHP-FPM?
marcelgsantos
0
200
PHPに関数型の魂を宿す〜PHP 8.5 で実現する堅牢なコードとは〜 #phpcon_hiroshima / phpcon-hiroshima-2025
shogogg
1
340
モテるデスク環境
mozumasu
3
1.3k
釣り地図SNSにおける有料機能の実装
nokonoko1203
0
200
登壇は dynamic! な営みである / speech is dynamic
da1chi
0
360
AI時代に必須!状況言語化スキル / ai-context-verbalization
minodriven
2
110
Amazon Verified Permissions実践入門 〜Cedar活用とAppSync導入事例/Practical Introduction to Amazon Verified Permissions
fossamagna
2
100
実践Claude Code:20の失敗から学ぶAIペアプログラミング
takedatakashi
18
8.9k
他言語経験者が Golangci-lint を最初のコーディングメンターにした話 / How Golangci-lint Became My First Coding Mentor: A Story from a Polyglot Programmer
uma31
0
440
Devvox Belgium - Agentic AI Patterns
kdubois
1
150
Featured
See All Featured
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.1k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
34
2.3k
Typedesign – Prime Four
hannesfritz
42
2.8k
The Cult of Friendly URLs
andyhume
79
6.6k
GraphQLとの向き合い方2022年版
quramy
49
14k
KATA
mclloyd
PRO
32
15k
Designing for Performance
lara
610
69k
The Cost Of JavaScript in 2023
addyosmani
55
9.1k
Rails Girls Zürich Keynote
gr2m
95
14k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
31
2.7k
jQuery: Nuts, Bolts and Bling
dougneiner
65
7.9k
Transcript
ChatGPTなどの言語モデルは どのようにシステムで使えるか LINE Fukuoka きしだ なおき 2023/6/14 Fukuoka Integration X
2023/06/14 2 自己紹介 • きしだ なおき • LINE Fukuoka •
twitter: @kis • 「プロになるJava」という Java入門書を書いてます
ChatGPTとは • サービスとして • Webやアプリでチャットを行う • APIとして • プログラムからChatGPTを呼び出す •
言語モデルとして • ChatGPTの基盤になるTransformerをベースにした言語モデル • 文章のどこが大事か注目する • 実際には2つのモデル • gpt-4 • gpt-3.5-turbo(サービスとしては無償で利用可能)
ChatGPTによって「AI」開発が活発に • 研究者から技術者へ • 日本でも独自モデルを作ろうという動き • 富岳での言語モデル開発 • 日本語特化モデルの相次ぐ発表
リスクの議論も始まる • 著作権 • 日本の著作権ではモデル作成がやりやすい • 利用時は人間の手による創作と変わらない基準 • ただし量が多い •
個人情報 • 利用時の問い合わせに個人情報を含めてしまう • 意図せずモデル作成に使われる • 有害情報 • モデル作成時の偏り • 思いがけない出力
ChatGPTの使いかた • サービスとして使う • APIとして使う
ChatGPTの利用方法 • 「言語の計算機」 • 文章の変換 • 文章の解析 • 一般知識の解説 •
テキスト生成(プログラムを含む)
文章の変換 • 箇条書きからメール文 • 要約 • 文体の変換 • 翻訳
文章の解析 • 文章の妥当性のチェック • 特性の判断 • プログラムの解説
特性判断の例 • ブログ著者のプロファイリング
プログラムの解説 • よくわからないプログラムを解説してくれる
一般知識の解説 • 検索がわり • 業務フローなどの解説
文章の生成 • 物語 • 詩 • プログラム
プロンプトの技術 • プロンプトエンジニアリング • Chain Of Thought(CoT) • Zero Shot
CoT
Chain Of Thought(CoT) • 考え方を提示すると正しい答えが出やすくなる
Zero Shot CoT • 「Let’s Think Step by Step」をつけるだけでいい
システムからの利用 • APIを利用 • 関数定義が可能になった • 文章から適切な機能呼び出しの抽出 • プラグイン •
ChatGPTのサービスから自分たちのサービスを呼び出す • Embedding(埋め込み) • 文章をベクトル化 • 近い文章を見つける
Embedding(埋め込み) • 文章の特徴をあらわすベクトルに変換 • 方向が近いベクトルは似た文章 • 文章検索に利用できる
ChatGPT以外の言語モデル • Google • PaLM2 • Bardで使われる • Meta •
LLaMA • OPT •
日本語特化LLM(発表順) • B=10億 • ChatGPTのGPT-3.5が355Bと言われている 提供元 名称 パラメータ数 オープン利用 LINE,
Naver ワークスモバイルジャパン HyperCLOVA 39B, 82B開発中 オルツ LHTM-2 160B ABEJA ABEJA LLM 13B Open版ABEJA LLM 2.7B 〇 CyberAgent 極予測AI 13B OpenCALM 6.8B 〇 Rinna Rinna 3.6B 〇 AI Inside PolyShere-1 140B
必要なメモリ • 32bit Floatだとパラメータ数の4倍 • 16bit Floatだとパラメータ数の2倍 • Rinna 3.6Bは8GB程度のGPUメモリが必要
使いやすくする • 小さいメモリで動かす • Int8 • パラメータ数と同じ量のメモリ • 4bit量子化 •
パラメータ数の半分のメモリ • Rinna 3.6Bだと2GB • CPUで動かす • llama.cpp • スマホで動かせる
ローカルLLMのメリット • 実験がやりやすい • LLMの動きを体感しやすい • 独自の学習ができる • Fine Tuning
FineTuningとプロンプトの違い • プロンプトは台本 • シナリオに沿った応答をしてくれるけど、「素」がでる • Fine Tuningは教育 • 「素」を変える
Fine Tuningの技術 • Fine Tuningを素直にやると大量のメモリが必要 • LoRA • Low Rank
Adaptation • 少ないメモリでFine Tuneできる
Fine Tuningにはデータセットが必要 • データセットはプロンプトの集合体 • プロンプトエンジニアリングのスケールアップ
まとめ • 現状は実験段階 • ChatGPTが出て半年で多くのサービス • つまり半年で実装できる • プログラミング的には難しくない •
現状は「思ったより使える」 • 「使える」になるにはもうしばらくかかる • 実験して、何ができるか、どのような制約があるか体感するのが 大切