Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ChatGPTなどの言語モデルは どのようにシステムで使えるか / How to use LL...
Search
Naoki Kishida
June 14, 2023
Programming
4
1.6k
ChatGPTなどの言語モデルは どのようにシステムで使えるか / How to use LLM in System
2023/6/14に開催されたFukuoka Integration Xでの登壇資料です
https://fix.connpass.com/event/283871/
Naoki Kishida
June 14, 2023
Tweet
Share
More Decks by Naoki Kishida
See All by Naoki Kishida
LLMベースAIの基本 / basics of LLM based AI
kishida
12
3.3k
Java 24まとめ / Java 24 summary
kishida
3
760
AI時代のプログラミング教育 / programming education in ai era
kishida
25
26k
Java Webフレームワークの現状 / java web framework at burikaigi
kishida
10
2.5k
AI時代に求められるプログラマの能力 / ability of programmer in AI era
kishida
19
13k
Java 23の概要とJava Web Frameworkの現状 / Java 23 and Java web framework
kishida
2
550
Java Webフレームワークの現状 / java web framework
kishida
10
11k
Is Object Oriented nesessary? COSCUP 2024
kishida
0
200
プログラムに組み込みたい人向けLLMの概要 / LLM for programmers
kishida
3
830
Other Decks in Programming
See All in Programming
Terraform やるなら公式スタイルガイドを読もう 〜重要項目 10選〜
hiyanger
13
3.2k
「リーダーは意思決定する人」って本当?~ 学びを現場で活かす、リーダー4ヶ月目の試行錯誤 ~
marina1017
0
240
バイブコーディング × 設計思考
nogu66
0
120
Vibe coding コードレビュー
kinopeee
0
460
サーバーサイドのビルド時間87倍高速化
plaidtech
PRO
0
410
バイブコーディングの正体——AIエージェントはソフトウェア開発を変えるか?
stakaya
5
1k
GitHub Copilotの全体像と活用のヒント AI駆動開発の最初の一歩
74th
8
3.1k
Flutterと Vibe Coding で個人開発!
hyshu
1
260
AIレビュアーをスケールさせるには / Scaling AI Reviewers
technuma
2
220
新世界の理解
koriym
0
140
Portapad紹介プレゼンテーション
gotoumakakeru
1
130
decksh - a little language for decks
ajstarks
4
21k
Featured
See All Featured
Art, The Web, and Tiny UX
lynnandtonic
302
21k
Site-Speed That Sticks
csswizardry
10
780
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
820
Visualization
eitanlees
146
16k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.8k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.6k
Fireside Chat
paigeccino
39
3.6k
Being A Developer After 40
akosma
90
590k
Optimising Largest Contentful Paint
csswizardry
37
3.4k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.6k
Rails Girls Zürich Keynote
gr2m
95
14k
Transcript
ChatGPTなどの言語モデルは どのようにシステムで使えるか LINE Fukuoka きしだ なおき 2023/6/14 Fukuoka Integration X
2023/06/14 2 自己紹介 • きしだ なおき • LINE Fukuoka •
twitter: @kis • 「プロになるJava」という Java入門書を書いてます
ChatGPTとは • サービスとして • Webやアプリでチャットを行う • APIとして • プログラムからChatGPTを呼び出す •
言語モデルとして • ChatGPTの基盤になるTransformerをベースにした言語モデル • 文章のどこが大事か注目する • 実際には2つのモデル • gpt-4 • gpt-3.5-turbo(サービスとしては無償で利用可能)
ChatGPTによって「AI」開発が活発に • 研究者から技術者へ • 日本でも独自モデルを作ろうという動き • 富岳での言語モデル開発 • 日本語特化モデルの相次ぐ発表
リスクの議論も始まる • 著作権 • 日本の著作権ではモデル作成がやりやすい • 利用時は人間の手による創作と変わらない基準 • ただし量が多い •
個人情報 • 利用時の問い合わせに個人情報を含めてしまう • 意図せずモデル作成に使われる • 有害情報 • モデル作成時の偏り • 思いがけない出力
ChatGPTの使いかた • サービスとして使う • APIとして使う
ChatGPTの利用方法 • 「言語の計算機」 • 文章の変換 • 文章の解析 • 一般知識の解説 •
テキスト生成(プログラムを含む)
文章の変換 • 箇条書きからメール文 • 要約 • 文体の変換 • 翻訳
文章の解析 • 文章の妥当性のチェック • 特性の判断 • プログラムの解説
特性判断の例 • ブログ著者のプロファイリング
プログラムの解説 • よくわからないプログラムを解説してくれる
一般知識の解説 • 検索がわり • 業務フローなどの解説
文章の生成 • 物語 • 詩 • プログラム
プロンプトの技術 • プロンプトエンジニアリング • Chain Of Thought(CoT) • Zero Shot
CoT
Chain Of Thought(CoT) • 考え方を提示すると正しい答えが出やすくなる
Zero Shot CoT • 「Let’s Think Step by Step」をつけるだけでいい
システムからの利用 • APIを利用 • 関数定義が可能になった • 文章から適切な機能呼び出しの抽出 • プラグイン •
ChatGPTのサービスから自分たちのサービスを呼び出す • Embedding(埋め込み) • 文章をベクトル化 • 近い文章を見つける
Embedding(埋め込み) • 文章の特徴をあらわすベクトルに変換 • 方向が近いベクトルは似た文章 • 文章検索に利用できる
ChatGPT以外の言語モデル • Google • PaLM2 • Bardで使われる • Meta •
LLaMA • OPT •
日本語特化LLM(発表順) • B=10億 • ChatGPTのGPT-3.5が355Bと言われている 提供元 名称 パラメータ数 オープン利用 LINE,
Naver ワークスモバイルジャパン HyperCLOVA 39B, 82B開発中 オルツ LHTM-2 160B ABEJA ABEJA LLM 13B Open版ABEJA LLM 2.7B 〇 CyberAgent 極予測AI 13B OpenCALM 6.8B 〇 Rinna Rinna 3.6B 〇 AI Inside PolyShere-1 140B
必要なメモリ • 32bit Floatだとパラメータ数の4倍 • 16bit Floatだとパラメータ数の2倍 • Rinna 3.6Bは8GB程度のGPUメモリが必要
使いやすくする • 小さいメモリで動かす • Int8 • パラメータ数と同じ量のメモリ • 4bit量子化 •
パラメータ数の半分のメモリ • Rinna 3.6Bだと2GB • CPUで動かす • llama.cpp • スマホで動かせる
ローカルLLMのメリット • 実験がやりやすい • LLMの動きを体感しやすい • 独自の学習ができる • Fine Tuning
FineTuningとプロンプトの違い • プロンプトは台本 • シナリオに沿った応答をしてくれるけど、「素」がでる • Fine Tuningは教育 • 「素」を変える
Fine Tuningの技術 • Fine Tuningを素直にやると大量のメモリが必要 • LoRA • Low Rank
Adaptation • 少ないメモリでFine Tuneできる
Fine Tuningにはデータセットが必要 • データセットはプロンプトの集合体 • プロンプトエンジニアリングのスケールアップ
まとめ • 現状は実験段階 • ChatGPTが出て半年で多くのサービス • つまり半年で実装できる • プログラミング的には難しくない •
現状は「思ったより使える」 • 「使える」になるにはもうしばらくかかる • 実験して、何ができるか、どのような制約があるか体感するのが 大切