Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ChatGPTなどの言語モデルは どのようにシステムで使えるか / How to use LL...
Search
Naoki Kishida
June 14, 2023
Programming
4
1.5k
ChatGPTなどの言語モデルは どのようにシステムで使えるか / How to use LLM in System
2023/6/14に開催されたFukuoka Integration Xでの登壇資料です
https://fix.connpass.com/event/283871/
Naoki Kishida
June 14, 2023
Tweet
Share
More Decks by Naoki Kishida
See All by Naoki Kishida
Is Object Oriented nesessary? COSCUP 2024
kishida
0
85
プログラムに組み込みたい人向けLLMの概要 / LLM for programmers
kishida
2
330
Javaの現状2024夏 / Java current status 2024 summer
kishida
4
1.6k
Java 22 Overview
kishida
1
290
Is Object-Oriented nessesary?
kishida
0
85
オブジェクト指向は必要なのか / Is object-oriented needed?
kishida
35
25k
AI時代を乗り切る実装力をつけよう / Get avility of implementation beyond AI era
kishida
3
6.3k
AI時代を生き抜くために処理をちゃんと書けるようになろう / write a executable process for AI era
kishida
27
16k
Javaは今どうなっているの? / how about java now
kishida
14
20k
Other Decks in Programming
See All in Programming
Modernisation Progressive d’Applications PHP
hhamon
0
160
Findy - エンジニア向け会社紹介 / Findy Letter for Engineers
findyinc
4
93k
Vue :: Better Testing 2024
up1
1
350
GitHub Copilot Workspace で我々のアプリ開発がどう変わるのか?
shuyakinjo
0
840
グローバルなソフトウェアテスト組織における課題と戦略 / Challenges and Strategies in a Global Software Testing Organization #mf_techday
imtnd
0
220
◯◯エンジニアになった理由
gessy0129
PRO
0
580
Remix × Cloudflare Pages × Sentry 奮闘記 / remix-pages-sentry
nkzn
1
360
dbt-ga4パッケージを実業務に導入してみた話
t_tokumaru_feedcorp
0
110
標準ライブラリの動向とイテレータのパフォーマンス
makki_d
3
180
[PHPカンファレンス沖縄2024]「無理なくできるだけ安全に」テストもないレガシーコードをリファクタリングするテクニック
ikezoemakoto
3
110
ポケモンで考えるコミュニケーション / Communication Lessons from Pokémon
mackey0225
3
130
Flutterアプリを生成AIで生成する勘所
rizumita
0
240
Featured
See All Featured
In The Pink: A Labor of Love
frogandcode
139
22k
The Cult of Friendly URLs
andyhume
76
6k
What the flash - Photography Introduction
edds
67
11k
The Power of CSS Pseudo Elements
geoffreycrofte
71
5.3k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
363
22k
How GitHub (no longer) Works
holman
310
140k
Rails Girls Zürich Keynote
gr2m
93
13k
Building Better People: How to give real-time feedback that sticks.
wjessup
359
19k
[RailsConf 2023] Rails as a piece of cake
palkan
49
4.7k
Adopting Sorbet at Scale
ufuk
73
8.9k
Making the Leap to Tech Lead
cromwellryan
129
8.8k
Optimising Largest Contentful Paint
csswizardry
31
2.8k
Transcript
ChatGPTなどの言語モデルは どのようにシステムで使えるか LINE Fukuoka きしだ なおき 2023/6/14 Fukuoka Integration X
2023/06/14 2 自己紹介 • きしだ なおき • LINE Fukuoka •
twitter: @kis • 「プロになるJava」という Java入門書を書いてます
ChatGPTとは • サービスとして • Webやアプリでチャットを行う • APIとして • プログラムからChatGPTを呼び出す •
言語モデルとして • ChatGPTの基盤になるTransformerをベースにした言語モデル • 文章のどこが大事か注目する • 実際には2つのモデル • gpt-4 • gpt-3.5-turbo(サービスとしては無償で利用可能)
ChatGPTによって「AI」開発が活発に • 研究者から技術者へ • 日本でも独自モデルを作ろうという動き • 富岳での言語モデル開発 • 日本語特化モデルの相次ぐ発表
リスクの議論も始まる • 著作権 • 日本の著作権ではモデル作成がやりやすい • 利用時は人間の手による創作と変わらない基準 • ただし量が多い •
個人情報 • 利用時の問い合わせに個人情報を含めてしまう • 意図せずモデル作成に使われる • 有害情報 • モデル作成時の偏り • 思いがけない出力
ChatGPTの使いかた • サービスとして使う • APIとして使う
ChatGPTの利用方法 • 「言語の計算機」 • 文章の変換 • 文章の解析 • 一般知識の解説 •
テキスト生成(プログラムを含む)
文章の変換 • 箇条書きからメール文 • 要約 • 文体の変換 • 翻訳
文章の解析 • 文章の妥当性のチェック • 特性の判断 • プログラムの解説
特性判断の例 • ブログ著者のプロファイリング
プログラムの解説 • よくわからないプログラムを解説してくれる
一般知識の解説 • 検索がわり • 業務フローなどの解説
文章の生成 • 物語 • 詩 • プログラム
プロンプトの技術 • プロンプトエンジニアリング • Chain Of Thought(CoT) • Zero Shot
CoT
Chain Of Thought(CoT) • 考え方を提示すると正しい答えが出やすくなる
Zero Shot CoT • 「Let’s Think Step by Step」をつけるだけでいい
システムからの利用 • APIを利用 • 関数定義が可能になった • 文章から適切な機能呼び出しの抽出 • プラグイン •
ChatGPTのサービスから自分たちのサービスを呼び出す • Embedding(埋め込み) • 文章をベクトル化 • 近い文章を見つける
Embedding(埋め込み) • 文章の特徴をあらわすベクトルに変換 • 方向が近いベクトルは似た文章 • 文章検索に利用できる
ChatGPT以外の言語モデル • Google • PaLM2 • Bardで使われる • Meta •
LLaMA • OPT •
日本語特化LLM(発表順) • B=10億 • ChatGPTのGPT-3.5が355Bと言われている 提供元 名称 パラメータ数 オープン利用 LINE,
Naver ワークスモバイルジャパン HyperCLOVA 39B, 82B開発中 オルツ LHTM-2 160B ABEJA ABEJA LLM 13B Open版ABEJA LLM 2.7B 〇 CyberAgent 極予測AI 13B OpenCALM 6.8B 〇 Rinna Rinna 3.6B 〇 AI Inside PolyShere-1 140B
必要なメモリ • 32bit Floatだとパラメータ数の4倍 • 16bit Floatだとパラメータ数の2倍 • Rinna 3.6Bは8GB程度のGPUメモリが必要
使いやすくする • 小さいメモリで動かす • Int8 • パラメータ数と同じ量のメモリ • 4bit量子化 •
パラメータ数の半分のメモリ • Rinna 3.6Bだと2GB • CPUで動かす • llama.cpp • スマホで動かせる
ローカルLLMのメリット • 実験がやりやすい • LLMの動きを体感しやすい • 独自の学習ができる • Fine Tuning
FineTuningとプロンプトの違い • プロンプトは台本 • シナリオに沿った応答をしてくれるけど、「素」がでる • Fine Tuningは教育 • 「素」を変える
Fine Tuningの技術 • Fine Tuningを素直にやると大量のメモリが必要 • LoRA • Low Rank
Adaptation • 少ないメモリでFine Tuneできる
Fine Tuningにはデータセットが必要 • データセットはプロンプトの集合体 • プロンプトエンジニアリングのスケールアップ
まとめ • 現状は実験段階 • ChatGPTが出て半年で多くのサービス • つまり半年で実装できる • プログラミング的には難しくない •
現状は「思ったより使える」 • 「使える」になるにはもうしばらくかかる • 実験して、何ができるか、どのような制約があるか体感するのが 大切