Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ChatGPTなどの言語モデルは どのようにシステムで使えるか / How to use LL...
Search
Naoki Kishida
June 14, 2023
Programming
4
1.6k
ChatGPTなどの言語モデルは どのようにシステムで使えるか / How to use LLM in System
2023/6/14に開催されたFukuoka Integration Xでの登壇資料です
https://fix.connpass.com/event/283871/
Naoki Kishida
June 14, 2023
Tweet
Share
More Decks by Naoki Kishida
See All by Naoki Kishida
ローカルLLM基礎知識 / local LLM basics 2025
kishida
29
15k
AIエージェントでのJava開発がはかどるMCPをAIを使って開発してみた / java mcp for jjug
kishida
5
1k
AIの弱点、やっぱりプログラミングは人間が(も)勉強しよう / YAPC AI and Programming
kishida
13
6.3k
海外登壇の心構え - コワクナイヨ - / how to prepare for a presentation abroad
kishida
2
130
Current States of Java Web Frameworks at JCConf 2025
kishida
0
1.7k
AIを活用し、今後に備えるための技術知識 / Basic Knowledge to Utilize AI
kishida
26
7.2k
LLMベースAIの基本 / basics of LLM based AI
kishida
13
3.6k
Java 24まとめ / Java 24 summary
kishida
3
830
AI時代のプログラミング教育 / programming education in ai era
kishida
25
27k
Other Decks in Programming
See All in Programming
並行開発のためのコードレビュー
miyukiw
0
290
2026年 エンジニアリング自己学習法
yumechi
0
140
例外処理とどう使い分ける?Result型を使ったエラー設計 #burikaigi
kajitack
16
6.1k
15年続くIoTサービスのSREエンジニアが挑む分散トレーシング導入
melonps
2
220
疑似コードによるプロンプト記述、どのくらい正確に実行される?
kokuyouwind
0
390
Honoを使ったリモートMCPサーバでAIツールとの連携を加速させる!
tosuri13
1
180
OCaml 5でモダンな並列プログラミングを Enjoyしよう!
haochenx
0
140
開発者から情シスまで - 多様なユーザー層に届けるAPI提供戦略 / Postman API Night Okinawa 2026 Winter
tasshi
0
200
インターン生でもAuth0で認証基盤刷新が出来るのか
taku271
0
190
CSC307 Lecture 06
javiergs
PRO
0
690
組織で育むオブザーバビリティ
ryota_hnk
0
180
AIエージェントのキホンから学ぶ「エージェンティックコーディング」実践入門
masahiro_nishimi
5
470
Featured
See All Featured
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
35
2.4k
Bridging the Design Gap: How Collaborative Modelling removes blockers to flow between stakeholders and teams @FastFlow conf
baasie
0
450
The untapped power of vector embeddings
frankvandijk
1
1.6k
Agile Actions for Facilitating Distributed Teams - ADO2019
mkilby
0
120
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
How to build a perfect <img>
jonoalderson
1
4.9k
Facilitating Awesome Meetings
lara
57
6.8k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
128
55k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
Discover your Explorer Soul
emna__ayadi
2
1.1k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1.2k
Learning to Love Humans: Emotional Interface Design
aarron
275
41k
Transcript
ChatGPTなどの言語モデルは どのようにシステムで使えるか LINE Fukuoka きしだ なおき 2023/6/14 Fukuoka Integration X
2023/06/14 2 自己紹介 • きしだ なおき • LINE Fukuoka •
twitter: @kis • 「プロになるJava」という Java入門書を書いてます
ChatGPTとは • サービスとして • Webやアプリでチャットを行う • APIとして • プログラムからChatGPTを呼び出す •
言語モデルとして • ChatGPTの基盤になるTransformerをベースにした言語モデル • 文章のどこが大事か注目する • 実際には2つのモデル • gpt-4 • gpt-3.5-turbo(サービスとしては無償で利用可能)
ChatGPTによって「AI」開発が活発に • 研究者から技術者へ • 日本でも独自モデルを作ろうという動き • 富岳での言語モデル開発 • 日本語特化モデルの相次ぐ発表
リスクの議論も始まる • 著作権 • 日本の著作権ではモデル作成がやりやすい • 利用時は人間の手による創作と変わらない基準 • ただし量が多い •
個人情報 • 利用時の問い合わせに個人情報を含めてしまう • 意図せずモデル作成に使われる • 有害情報 • モデル作成時の偏り • 思いがけない出力
ChatGPTの使いかた • サービスとして使う • APIとして使う
ChatGPTの利用方法 • 「言語の計算機」 • 文章の変換 • 文章の解析 • 一般知識の解説 •
テキスト生成(プログラムを含む)
文章の変換 • 箇条書きからメール文 • 要約 • 文体の変換 • 翻訳
文章の解析 • 文章の妥当性のチェック • 特性の判断 • プログラムの解説
特性判断の例 • ブログ著者のプロファイリング
プログラムの解説 • よくわからないプログラムを解説してくれる
一般知識の解説 • 検索がわり • 業務フローなどの解説
文章の生成 • 物語 • 詩 • プログラム
プロンプトの技術 • プロンプトエンジニアリング • Chain Of Thought(CoT) • Zero Shot
CoT
Chain Of Thought(CoT) • 考え方を提示すると正しい答えが出やすくなる
Zero Shot CoT • 「Let’s Think Step by Step」をつけるだけでいい
システムからの利用 • APIを利用 • 関数定義が可能になった • 文章から適切な機能呼び出しの抽出 • プラグイン •
ChatGPTのサービスから自分たちのサービスを呼び出す • Embedding(埋め込み) • 文章をベクトル化 • 近い文章を見つける
Embedding(埋め込み) • 文章の特徴をあらわすベクトルに変換 • 方向が近いベクトルは似た文章 • 文章検索に利用できる
ChatGPT以外の言語モデル • Google • PaLM2 • Bardで使われる • Meta •
LLaMA • OPT •
日本語特化LLM(発表順) • B=10億 • ChatGPTのGPT-3.5が355Bと言われている 提供元 名称 パラメータ数 オープン利用 LINE,
Naver ワークスモバイルジャパン HyperCLOVA 39B, 82B開発中 オルツ LHTM-2 160B ABEJA ABEJA LLM 13B Open版ABEJA LLM 2.7B 〇 CyberAgent 極予測AI 13B OpenCALM 6.8B 〇 Rinna Rinna 3.6B 〇 AI Inside PolyShere-1 140B
必要なメモリ • 32bit Floatだとパラメータ数の4倍 • 16bit Floatだとパラメータ数の2倍 • Rinna 3.6Bは8GB程度のGPUメモリが必要
使いやすくする • 小さいメモリで動かす • Int8 • パラメータ数と同じ量のメモリ • 4bit量子化 •
パラメータ数の半分のメモリ • Rinna 3.6Bだと2GB • CPUで動かす • llama.cpp • スマホで動かせる
ローカルLLMのメリット • 実験がやりやすい • LLMの動きを体感しやすい • 独自の学習ができる • Fine Tuning
FineTuningとプロンプトの違い • プロンプトは台本 • シナリオに沿った応答をしてくれるけど、「素」がでる • Fine Tuningは教育 • 「素」を変える
Fine Tuningの技術 • Fine Tuningを素直にやると大量のメモリが必要 • LoRA • Low Rank
Adaptation • 少ないメモリでFine Tuneできる
Fine Tuningにはデータセットが必要 • データセットはプロンプトの集合体 • プロンプトエンジニアリングのスケールアップ
まとめ • 現状は実験段階 • ChatGPTが出て半年で多くのサービス • つまり半年で実装できる • プログラミング的には難しくない •
現状は「思ったより使える」 • 「使える」になるにはもうしばらくかかる • 実験して、何ができるか、どのような制約があるか体感するのが 大切