$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ChatGPTなどの言語モデルは どのようにシステムで使えるか / How to use LL...
Search
Naoki Kishida
June 14, 2023
Programming
4
1.6k
ChatGPTなどの言語モデルは どのようにシステムで使えるか / How to use LLM in System
2023/6/14に開催されたFukuoka Integration Xでの登壇資料です
https://fix.connpass.com/event/283871/
Naoki Kishida
June 14, 2023
Tweet
Share
More Decks by Naoki Kishida
See All by Naoki Kishida
ローカルLLM基礎知識 / local LLM basics 2025
kishida
27
14k
AIエージェントでのJava開発がはかどるMCPをAIを使って開発してみた / java mcp for jjug
kishida
5
900
AIの弱点、やっぱりプログラミングは人間が(も)勉強しよう / YAPC AI and Programming
kishida
13
6k
海外登壇の心構え - コワクナイヨ - / how to prepare for a presentation abroad
kishida
2
110
Current States of Java Web Frameworks at JCConf 2025
kishida
0
1.5k
AIを活用し、今後に備えるための技術知識 / Basic Knowledge to Utilize AI
kishida
25
7k
LLMベースAIの基本 / basics of LLM based AI
kishida
13
3.5k
Java 24まとめ / Java 24 summary
kishida
3
810
AI時代のプログラミング教育 / programming education in ai era
kishida
25
27k
Other Decks in Programming
See All in Programming
Github Copilotのチャット履歴ビューワーを作りました~WPF、dotnet10もあるよ~ #clrh111
katsuyuzu
0
110
ViewファーストなRailsアプリ開発のたのしさ
sugiwe
0
460
WebRTC、 綺麗に見るか滑らかに見るか
sublimer
1
160
WebRTC と Rust と8K 60fps
tnoho
2
2k
手が足りない!兼業データエンジニアに必要だったアーキテクチャと立ち回り
zinkosuke
0
680
開発に寄りそう自動テストの実現
goyoki
2
950
愛される翻訳の秘訣
kishikawakatsumi
3
320
TypeScriptで設計する 堅牢さとUXを両立した非同期ワークフローの実現
moeka__c
6
3k
sbt 2
xuwei_k
0
290
Tinkerbellから学ぶ、Podで DHCPをリッスンする手法
tomokon
0
130
Full-Cycle Reactivity in Angular: SignalStore mit Signal Forms und Resources
manfredsteyer
PRO
0
140
30分でDoctrineの仕組みと使い方を完全にマスターする / phpconkagawa 2025 Doctrine
ttskch
4
860
Featured
See All Featured
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
Context Engineering - Making Every Token Count
addyosmani
9
510
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
The Cost Of JavaScript in 2023
addyosmani
55
9.3k
Raft: Consensus for Rubyists
vanstee
141
7.2k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
Music & Morning Musume
bryan
46
7k
Java REST API Framework Comparison - PWX 2021
mraible
34
9k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.1k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.8k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
710
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1.1k
Transcript
ChatGPTなどの言語モデルは どのようにシステムで使えるか LINE Fukuoka きしだ なおき 2023/6/14 Fukuoka Integration X
2023/06/14 2 自己紹介 • きしだ なおき • LINE Fukuoka •
twitter: @kis • 「プロになるJava」という Java入門書を書いてます
ChatGPTとは • サービスとして • Webやアプリでチャットを行う • APIとして • プログラムからChatGPTを呼び出す •
言語モデルとして • ChatGPTの基盤になるTransformerをベースにした言語モデル • 文章のどこが大事か注目する • 実際には2つのモデル • gpt-4 • gpt-3.5-turbo(サービスとしては無償で利用可能)
ChatGPTによって「AI」開発が活発に • 研究者から技術者へ • 日本でも独自モデルを作ろうという動き • 富岳での言語モデル開発 • 日本語特化モデルの相次ぐ発表
リスクの議論も始まる • 著作権 • 日本の著作権ではモデル作成がやりやすい • 利用時は人間の手による創作と変わらない基準 • ただし量が多い •
個人情報 • 利用時の問い合わせに個人情報を含めてしまう • 意図せずモデル作成に使われる • 有害情報 • モデル作成時の偏り • 思いがけない出力
ChatGPTの使いかた • サービスとして使う • APIとして使う
ChatGPTの利用方法 • 「言語の計算機」 • 文章の変換 • 文章の解析 • 一般知識の解説 •
テキスト生成(プログラムを含む)
文章の変換 • 箇条書きからメール文 • 要約 • 文体の変換 • 翻訳
文章の解析 • 文章の妥当性のチェック • 特性の判断 • プログラムの解説
特性判断の例 • ブログ著者のプロファイリング
プログラムの解説 • よくわからないプログラムを解説してくれる
一般知識の解説 • 検索がわり • 業務フローなどの解説
文章の生成 • 物語 • 詩 • プログラム
プロンプトの技術 • プロンプトエンジニアリング • Chain Of Thought(CoT) • Zero Shot
CoT
Chain Of Thought(CoT) • 考え方を提示すると正しい答えが出やすくなる
Zero Shot CoT • 「Let’s Think Step by Step」をつけるだけでいい
システムからの利用 • APIを利用 • 関数定義が可能になった • 文章から適切な機能呼び出しの抽出 • プラグイン •
ChatGPTのサービスから自分たちのサービスを呼び出す • Embedding(埋め込み) • 文章をベクトル化 • 近い文章を見つける
Embedding(埋め込み) • 文章の特徴をあらわすベクトルに変換 • 方向が近いベクトルは似た文章 • 文章検索に利用できる
ChatGPT以外の言語モデル • Google • PaLM2 • Bardで使われる • Meta •
LLaMA • OPT •
日本語特化LLM(発表順) • B=10億 • ChatGPTのGPT-3.5が355Bと言われている 提供元 名称 パラメータ数 オープン利用 LINE,
Naver ワークスモバイルジャパン HyperCLOVA 39B, 82B開発中 オルツ LHTM-2 160B ABEJA ABEJA LLM 13B Open版ABEJA LLM 2.7B 〇 CyberAgent 極予測AI 13B OpenCALM 6.8B 〇 Rinna Rinna 3.6B 〇 AI Inside PolyShere-1 140B
必要なメモリ • 32bit Floatだとパラメータ数の4倍 • 16bit Floatだとパラメータ数の2倍 • Rinna 3.6Bは8GB程度のGPUメモリが必要
使いやすくする • 小さいメモリで動かす • Int8 • パラメータ数と同じ量のメモリ • 4bit量子化 •
パラメータ数の半分のメモリ • Rinna 3.6Bだと2GB • CPUで動かす • llama.cpp • スマホで動かせる
ローカルLLMのメリット • 実験がやりやすい • LLMの動きを体感しやすい • 独自の学習ができる • Fine Tuning
FineTuningとプロンプトの違い • プロンプトは台本 • シナリオに沿った応答をしてくれるけど、「素」がでる • Fine Tuningは教育 • 「素」を変える
Fine Tuningの技術 • Fine Tuningを素直にやると大量のメモリが必要 • LoRA • Low Rank
Adaptation • 少ないメモリでFine Tuneできる
Fine Tuningにはデータセットが必要 • データセットはプロンプトの集合体 • プロンプトエンジニアリングのスケールアップ
まとめ • 現状は実験段階 • ChatGPTが出て半年で多くのサービス • つまり半年で実装できる • プログラミング的には難しくない •
現状は「思ったより使える」 • 「使える」になるにはもうしばらくかかる • 実験して、何ができるか、どのような制約があるか体感するのが 大切