Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
LangChainのDocument機能を使って文書処理を柔軟にする
Search
西岡 賢一郎 (Kenichiro Nishioka)
October 27, 2023
Technology
0
990
LangChainのDocument機能を使って文書処理を柔軟にする
機械学習の社会実装勉強会第28回 (
https://machine-learning-workshop.connpass.com/event/298301/
) の発表資料です。
西岡 賢一郎 (Kenichiro Nishioka)
October 27, 2023
Tweet
Share
More Decks by 西岡 賢一郎 (Kenichiro Nishioka)
See All by 西岡 賢一郎 (Kenichiro Nishioka)
LangGraphを使ったHuman in the loop
knishioka
0
94
AIシステムの品質と成功率を向上させるReflection
knishioka
0
23
LangGraph Templatesによる効率的なワークフロー構築
knishioka
0
110
AIエージェントの開発に特化した統合開発環境 LangGraph Studio
knishioka
0
150
LangGraphを用いたAIアプリケーションにおけるメモリ永続化の実践
knishioka
1
390
Text-to-SQLをLangSmithで評価
knishioka
0
190
効果的なLLM評価法 LangSmithの技術と実践
knishioka
1
380
LangGraphのノード・エッジ・ルーティングを深堀り
knishioka
1
560
LangGraphでマルチエージェントワークフローを構築
knishioka
0
420
Other Decks in Technology
See All in Technology
EMConf JP の楽しみ方 / How to enjoy EMConf JP
pauli
2
150
dbtを中心にして組織のアジリティとガバナンスのトレードオンを考えてみた
gappy50
0
250
0→1事業こそPMは営業すべし / pmconf #落選お披露目 / PM should do sales in zero to one
roki_n_
PRO
1
1.4k
KMP with Crashlytics
sansantech
PRO
0
240
.NET AspireでAzure Functionsやクラウドリソースを統合する
tsubakimoto_s
0
190
いま現場PMのあなたが、 経営と向き合うPMになるために 必要なこと、腹をくくること
hiro93n
9
7.6k
完全自律型AIエージェントとAgentic Workflow〜ワークフロー構築という現実解
pharma_x_tech
0
350
【JAWS-UG大阪 reInvent reCap LT大会 サンバが始まったら強制終了】“1分”で初めてのソロ参戦reInventを数字で振り返りながら反省する
ttelltte
0
140
Oracle Exadata Database Service(Dedicated Infrastructure):サービス概要のご紹介
oracle4engineer
PRO
0
12k
ABWGのRe:Cap!
hm5ug
1
120
Amazon Route 53, 待ちに待った TLSAレコードのサポート開始
kenichinakamura
0
170
あなたの人生も変わるかも?AWS認定2つで始まったウソみたいな話
iwamot
3
850
Featured
See All Featured
A Modern Web Designer's Workflow
chriscoyier
693
190k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
29
960
GraphQLとの向き合い方2022年版
quramy
44
13k
For a Future-Friendly Web
brad_frost
176
9.5k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
33
2k
Testing 201, or: Great Expectations
jmmastey
41
7.2k
Unsuck your backbone
ammeep
669
57k
The MySQL Ecosystem @ GitHub 2015
samlambert
250
12k
The Cult of Friendly URLs
andyhume
78
6.1k
KATA
mclloyd
29
14k
It's Worth the Effort
3n
183
28k
Fireside Chat
paigeccino
34
3.1k
Transcript
LangChainのDocument機能を使って 文書処理を柔軟にする 2023/10/28 第28回勉強会
自己紹介 • 名前: 西岡 賢一郎 ◦ Twitter: @ken_nishi ◦ note:
西岡賢一郎@研究者から経営者へ (https://note.com/kenichiro) ◦ YouTube: 【経営xデータサイエンスx開発】西岡 賢一郎のチャンネル (https://www.youtube.com/channel/UCpiskjqLv1AJg64jFCQIyBg) • 経歴 ◦ 東京大学で位置予測アルゴリズムを研究し博士 (学術) を取得 ◦ 東京大学の博士課程在学中にデータサイエンスをもとにしたサービスを提供する株式会社ト ライディアを設立 ◦ トライディアを別のIT会社に売却し、CTOとして3年半務め、2021年10月末にCTOを退職 ◦ CDPのスタートアップ (Sr. PdM)・株式会社データインフォームド (CEO)・株式会社ディース タッツ (CTO) ◦ 自社および他社のプロダクト開発チーム・データサイエンスチームの立ち上げ経験
本日のお話 • LangChainを使った分散処理 • LangChainのDocument Loader • デモ
LangChainを使った分散処理
ChatGPTのToken制限 • GPT-3.5 Turboでは4Kまたは16Kのtoken、GPT-4 では8Kまたは32Kのtokenを渡すことが可能 • 英語であれば1単語1tokenだが、日本語のtokenは文 字によるので、token数の推定が困難 • token数を確認するしたい場合はこちら
→ https://platform.openai.com/tokenizer • ticktokenというライブラリを使うことでtoken数を 調べることもできる ◦ ChatGPTでは「cl100k_base」という tokenizerを使用 ◦ 日本語のtoken数は英語に比べて多くなる傾 向にある • 長文を処理したい場合、Token数の制限にひっか かってしまう
長文の分散処理 • ChatGPTのtoken数制限を超える文書を処理したい場合、長文を分割して短い文章 単位で分散処理することが有効 • LangChainでは長文の分散処理方法として、Map Reduce, Refine, Map Rerankなど
が用意されている。 • 分散処理を利用することで、長文の要約や長文のQAができるようになる。
Map Reduce • 分割された文章をそれぞれ処理し (Map)、それぞれの結果をまとめて (Reduce)、まとめられた結果から最終的な回答を出す。 • Mapフェーズは独立した処理となるため、並列処理をすることが可能。 • 分散された分、ChatGPTの呼び出し回数が増える
(コストがかかる)。
Refine • 分割された文書を順番にChatGPTに処理させる。 • 直前の結果を入力に含めるのが特徴。 • 処理が独立していないため、Map Reduceより文脈の把握が得意。 • 逐次処理のため並列化はできない。また、文書の順番に影響を受ける。
Map Rerank • 分割された文書から、回答と回答に対する自信をスコアで出し、最高スコア となったものを回答として出す。 • 独立した処理となるため、並列処理が可能。Map ReduceよりもAPI呼び出し が少なくなる。 •
文書間の情報を組み合わせることができない。
LangChainのDocument Loader
Document Loader • そもそもChatGPTに処理させる文書が、ウェブペー ジやPDFなど単純なテキスト形式ではない場合は、 LangChainのDocument Loader (https://python.langchain.com/docs/integration s/document_loaders) を利用する。
• 100種以上のDocument Loaderが用意されている。 ◦ ArxivLoader: arXivから論文を取得する。 ◦ ConfluenceLoader: Conflunceのページを取 得する。 ◦ GitHubIssuesLoader: GitHubのIssueやPull Requestを取得する。 ◦ WikipediaLoader: Wikipediaの検索結果を取 得する。 ◦ YoutubeLoader: YouTubeの文字起こしを取 得する。
デモ • デモの内容 ◦ Token数をカウントする方法 ◦ Document Loader ◦ 長文の要約
◦ 長文のQA • ソースコード https://github.com/knishioka/machine-learning-workshop/blob/main/l angchain/question_and_summarize.ipynb