Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
DeepSeekを使ったローカルLLM構築
Search
西岡 賢一郎 (Kenichiro Nishioka)
February 22, 2025
Technology
0
250
DeepSeekを使ったローカルLLM構築
機械学習の社会実装勉強会第44回 (
https://machine-learning-workshop.connpass.com/event/346001/
) の発表資料です。
西岡 賢一郎 (Kenichiro Nishioka)
February 22, 2025
Tweet
Share
More Decks by 西岡 賢一郎 (Kenichiro Nishioka)
See All by 西岡 賢一郎 (Kenichiro Nishioka)
Claude Agent SDKで始める実践的AIエージェント開発
knishioka
0
58
AIがAIを拡張する時代へ ~Claude Codeで実現する高品質文書作成~
knishioka
0
92
MLflow × LLM 生成AI時代の実験管理とリスク低減
knishioka
0
120
Conductor: Git Worktreeで実現する並列AIコーディング
knishioka
0
83
ローカルLLMでファインチューニング
knishioka
0
1.5k
自作MCPサーバ入門
knishioka
0
61
成功と失敗の実像と生成AI時代の展望
knishioka
0
82
MCPが変えるAIとの協働
knishioka
1
230
LangFlowではじめるRAG・マルチエージェントシステム構築
knishioka
0
320
Other Decks in Technology
See All in Technology
“それなりに”安全なWebアプリケーションの作り方
xryuseix
0
370
Flutterで実装する実践的な攻撃対策とセキュリティ向上
fujikinaga
2
420
AIエージェントによるエンタープライズ向けスライド検索!
shibuiwilliam
1
420
CDKの魔法を少し解いてみる ― synth・build・diffで覗くIaCの裏側 ―
takahumi27
1
150
【M3】攻めのセキュリティの実践!プロアクティブなセキュリティ対策の実践事例
axelmizu
0
150
第65回コンピュータビジョン勉強会
tsukamotokenji
0
140
AWS資格は取ったけどIAMロールを腹落ちできてなかったので、年内に整理してみた
hiro_eng_
0
220
Proxmox × HCP Terraformで始めるお家プライベートクラウド
lamaglama39
1
200
CloudFormationコンソールから、実際に作られたリソースを辿れるようになろう!
amixedcolor
1
190
AIを前提に、業務を”再構築”せよ IVRyの9ヶ月にわたる挑戦と未来の働き方 (BTCONJP2025)
yueda256
1
710
Flutter DevToolsで発見! 本番アプリのパフォーマンス問題と改善の実践
goto_tsl
1
630
Moto: Latent Motion Token as the Bridging Language for Learning Robot Manipulation from Videos
peisuke
0
150
Featured
See All Featured
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.8k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.6k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
Become a Pro
speakerdeck
PRO
29
5.6k
Being A Developer After 40
akosma
91
590k
Git: the NoSQL Database
bkeepers
PRO
432
66k
A Tale of Four Properties
chriscoyier
162
23k
Six Lessons from altMBA
skipperchong
29
4.1k
Rebuilding a faster, lazier Slack
samanthasiow
84
9.3k
Designing Experiences People Love
moore
142
24k
Practical Orchestrator
shlominoach
190
11k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
192
56k
Transcript
DeepSeekを使ったローカルLLM構築 機械学習の社会実装勉強会 第44回 (2025/02/22) 1
自己紹介 名前: 西岡 賢一郎 10年以上にわたり、データ分析や機械学習の分 野でスタートアップの経営に携わる。現在は、 日本とマレーシアを拠点に活動中。 SNS X: @ken_nishi
LinkedIn: https://www.linkedin.com/in/kenichiro- nishioka/ Facebook: https://www.facebook.com/kenichiro.nishioka note: https://note.com/kenichiro YouTube: https://www.youtube.com/@kenichiro- nishioka 経歴 東京大学で位置予測アルゴリズムを研究し博 士 (学術) を取得 東京大学の博士課程在学中にデータサイエン スをもとにしたサービスを提供する株式会社 トライディアを設立 トライディアを別のIT会社に売却し、CTOと して3年半務め、2021年10月末にCTOを退職 株式会社データインフォームド (CEO)・株式 会社ディースタッツ (CTO)・CDPのスタート アップ (Sr. Solution Architect) 自社および他社のプロダクト開発チーム・デ ータサイエンスチームの立ち上げ経験 2
アジェンダ 1. Local LLMが求められる背景 2. Local LLMで使えるオープンソースモデル 3. Local LLMを動かすプラットフォーム
4. まとめ 3
Local LLMが求められる背景 4
Local LLMの戦略的必要性 1. データセキュリティとプライバシー 社内に機密データを留めたまま AI 活用が可能 クラウド型と異なり、外部への情報送信が不要 製品開発情報や顧客データの漏洩リスクを最小化 2.
レスポンス時間の改善 インターネット接続に依存しない安定した応答 エッジでの処理によるレイテンシの最小化 リアルタイム性が求められる製造ラインでの活用に対 応 3. コスト面での利点 APIコール課金が不要 利用量に関係なく固定費での運用が可能 大規模な文書処理での優位性 5
産業別活用事例 金融業界での活用 機密性の高い投資戦略文書の分析 非公開の取引データを用いた不正検知 顧客の資産情報を含む文書要約 製造業での実装 製造ラインでのリアルタイム異常検知 社外秘の設計図面からの情報抽出 工場内の閉域ネットワークでの稼働分析 医療分野での展開
患者の個人情報を含むカルテ分析 院内システムでの処方箋チェック 医療画像の即時診断支援 6
Local LLMで使えるオープンソースモデル 7
主要なオープンソースモデル Meta Llama, Google Gemma, Microsoft Phi, DeepSeek など様々なモデルがオープンソースで利用可能となって いる
同じモデルでもパラメータ数が異なるバージョンが提 供されている (例: llama3.2:3b, llama3.2:1b) パラメータ数が多いほどモデルサイズが大きくなり賢 くなる 同じパラメータ数でもモデルによって得意・不得意分 野が異なる 出典: https://ollama.com/library/llama3.2 8
Deepseek 中国DeepSeek社のV3/R1シリーズは、MoE(Mixture of Experts)アーキテクチャとMLA(Multi-head Latent Attention)技術を組み合わせ、GPT-4o同等性能を低コ ストで実現 数学・コーティング・推論タスクで高性能 モデルが公開されており商用利用可能 出典:
https://ollama.com/library/deepseek-r1 9
Local LLMを動かすプラットフォーム 10
主要プラットフォームの比較 特徴 Ollama LM Studio vLLM 利用方式 CLI + API
GUI API モデル 多数のOSS LLM 60以上のOSS LLM HuggingFaceモデル ライセンス オープンソース クローズド オープンソース 商用利用 可能 要リクエスト 可能 選定のポイント CLIベース開発:Ollama GUI操作重視:LM Studio 高速処理重視:vLLM 11
Ollama 主な特徴 ローカル実行: プライバシー保護、オフライン利用可能 使いやすさ: マルチプラットフォーム、CLIインターフェ ース 高度な機能: GPUアクセラレーション、REST API対応
多様なモデル: Llama 2, Code Llama等をサポート オープンソース: 無料で利用可能、カスタマイズ可能 12
Ollamaを選ぶ理由 1. インストールの簡単さ: MacならHomebrewでインストール可能 brew install ollama 2. モデルの管理が用意 ollama
pull deepseek-r1:8b # モデルの取得 ollama list # インストール済みモデルの表示 ollama rm deepseek-r1:8b # モデルの削除 3. モデルをすぐに実行可能 ollama run deepseek-r1:8b 4. APIアクセス可能 url -X POST http://localhost:11434/api/generate -d '{ "model": "deepseek-r1:8b", "prompt":"Why is the sky blue?" }' 5. Modelfileを使ったモデルのカスタマイズも可能 (次のページ参照) 13
Ollama Modelfile カスタムAIモデルを作成・管理するための設定ファイル 主な構文 FROM <base-model> :ベースモデルを指定 SYSTEM "<text>" :システムプロンプトを設定
PARAMETER key=value :モデルのパラメータ(例: temperature=0.7 )を設定 TEMPLATE "<prompt-template>" :入力フォーマットをカスタマイズ ADAPTER <adapter> :LoRAや追加学習済みモデルを適用 特徴 カスタマイズ可能:プロンプトやパラメータを自由に設定可能 軽量な記述:Dockerfileのようなシンプルな形式 ローカル実行対応:PC上で簡単にモデルを管理・実行可能 14
CLIで複数モデルの連携が可能 pipeで入出力をつなぐことで異なるモデルを簡単に連携可能 ollama run planner-model "<タスク>" | ollama run solver-model
| ollama run translator-model System Promptを指定して独自モデルを作る Modelfile内でSystem Promptを設定し特定の挙動に特化したモデルを作成 # llama3.1-planner.modelfile FROM llama3.1 SYSTEM """ あなたは別のAIへの指示を作成するアシスタントです。 与えられた質問に答えるためのプランニングをしてください。 """ Modelfileから独自モデルを作成 ollama create llama3.1-planner -f llama3.1-planner.modelfile 15
デモ Ollamaの基本操作 OllamaでDeepSeekを実行 Modelfileでカスタマイズ 16
まとめ 1. Local LLMはセキュリティ・速度・コストのメリットがある 2. オープンソースの公開やLocal LLMを動かす技術基盤の成熟により導入障壁が低下 3. マシンスペックに合わせて大小様々なモデルを選択可能 4.
Ollamaを用いて簡単にモデルを管理 5. Ollamaをpipeで利用することで複数のモデルを連携可能 17
お問い合わせ お仕事の依頼・機械学習・LLMの実装のご相談は、X, LinkedIn, Facebookなどで DMをください 機械学習を社会実装する仲間も募集中!! 18