Agent/Map QueryをKey, Valueとして Transformer Decoder構造で処理 • UniADよりも⾼速で⾼精度に PARA-Drive [Weng+ CVPR2024] • 全てのモジュールが並列でもSoTA相当の精度 • 推論時は⾏動計画以外のモジュールを除いて ⾼速化することも可能 (2.77倍⾼速化) • モジュール間の情報のやりとりはBEV特徴を 介して暗黙的に⾏われる UniAD VAD 物体検出 / 運動予測 マップ予測 ⾏動計画 マップ 予測 物体検出 運動予測 Occupancy 予測 ⾏動計画 BEV特徴 Jiang+ (2023), “VAD: Vectorized Scene Representation for Efficient Autonomous Driving”, ICCV 2023.より引⽤ Weng+ (2024), “PARA-Drive: Parallelized Architecture for Real-time Autonomous Driving”, CVPR 2024.より引⽤