Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Artificial Neural Network: A brief study
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Koki Kazaore
May 20, 2024
Research
0
40
Artificial Neural Network: A brief study
論文輪読会使用資料
Koki Kazaore
May 20, 2024
Tweet
Share
More Decks by Koki Kazaore
See All by Koki Kazaore
Proposal and Implementation of a New Matching Model for CtoC Bike Share Service
kokikazaore
0
48
nwHacks participation report
kokikazaore
0
32
Won't you come to my house?
kokikazaore
0
73
Bitcoin: A Peer-to-Peer Electronic Cash System
kokikazaore
0
67
C2Cシェアサイクル実現に向けた人と自転車のマッチング最適化
kokikazaore
0
65
研究紹介とネットワークサーバー移行奮闘記
kokikazaore
0
110
Other Decks in Research
See All in Research
Tiaccoon: Unified Access Control with Multiple Transports in Container Networks
hiroyaonoe
0
620
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
220
LLMアプリケーションの透明性について
fufufukakaka
0
140
社内データ分析AIエージェントを できるだけ使いやすくする工夫
fufufukakaka
1
900
SREのためのテレメトリー技術の探究 / Telemetry for SRE
yuukit
13
3k
【NICOGRAPH2025】Photographic Conviviality: ボディペイント・ワークショップによる 同時的かつ共生的な写真体験
toremolo72
0
170
さまざまなAgent FrameworkとAIエージェントの評価
ymd65536
1
420
生成AI による論文執筆サポート・ワークショップ 論文執筆・推敲編 / Generative AI-Assisted Paper Writing Support Workshop: Drafting and Revision Edition
ks91
PRO
0
120
Sat2City:3D City Generation from A Single Satellite Image with Cascaded Latent Diffusion
satai
4
660
CoRL2025速報
rpc
4
4.2k
2025-11-21-DA-10th-satellite
yegusa
0
110
説明可能な機械学習と数理最適化
kelicht
2
940
Featured
See All Featured
Ecommerce SEO: The Keys for Success Now & Beyond - #SERPConf2024
aleyda
1
1.8k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
How People are Using Generative and Agentic AI to Supercharge Their Products, Projects, Services and Value Streams Today
helenjbeal
1
130
Mobile First: as difficult as doing things right
swwweet
225
10k
The Director’s Chair: Orchestrating AI for Truly Effective Learning
tmiket
1
97
The agentic SEO stack - context over prompts
schlessera
0
640
Claude Code のすすめ
schroneko
67
210k
Accessibility Awareness
sabderemane
0
53
Chasing Engaging Ingredients in Design
codingconduct
0
110
It's Worth the Effort
3n
188
29k
Evolving SEO for Evolving Search Engines
ryanjones
0
130
Hiding What from Whom? A Critical Review of the History of Programming languages for Music
tomoyanonymous
2
420
Transcript
Artificial Neural Network: A brief study 人工ニューラルネットワーク: 概要研究 知能モデリング研究室 Koki
Kazaore 2024/5/17 英語ゼミ(論文輪読会)
2 ページタイトルが黒文字:論文の内容要約スライド ページタイトルが橙文字:説明用追加スライド はじめに
3 - タイトル: - Artificial Neural Network: A brief study(2022)
- 著者: - Mayuri Thorat, Shraddha Pandit, Supriya Balote - 選定理由・目的 - できるだけ共通項となり得る論文に時間を割きたい - ニューラルネットワーク迷子になったら基礎に立ち帰れ る資料にしたい - ANNを理解した上で,CNN/RNNに派生したい 論文詳細
4 Abstract 人工ニューラルネットワーク(ANN)とは 脳などがデータを処理する方法から着想を得た概念 人間と同様に,例をもとに学習し,それが膨大であれ ば 高い精度をもたらす. 本論文では - ANNの概要・動作・学習 -
ANNの応用と利点 について説明する.
5 問題解決における従来の方法 - 問題の解決方法を知っている人がプログラムする。 - コンピュータは具体的なアルゴリズムに基づいて問題を解 決する。 ニューラルネットワークのアプローチ - 人間の脳のように情報を処理する。
- 曖昧なアルゴリズムが必要な問題と対峙できる。 - 文字認識・未来予測 Introduction
6 Introduction シンプルな神経細胞図×100億個 細胞体: 入力を処理 総和なり乗算なり 樹状突起:入力 核 軸索: 出力信号を送る
軸索末梢 N N N N N N N N N N シナプス
7 人間の脳のようにデータを分析・処理するための, 生物学的な着想を得たコンピューティングシステム What is ANN?
8 What is ANN? 構造 - 入力層 - 隠れ層 -
出力層 メリデメ - メリット:適応性・耐複雑性 - デメリット:not厳密・複雑構造
9 1. 非線形タスクの実行 2. 高い耐障害性 3. トレーニング後の柔軟性 4. 人間の代替 5.
入力変数の柔軟性 6. マルチタスク能力 7. 迅速な作業 8. ソフトウェアの完全なバックアップ 9. 意思決定と自動再プログラム Advantages
10 Applications 1. 手書き文字認識 2. 株価予測 3. 旅行計画問題 4. 画像圧縮
5. 関数近似 6. 分類 7. データ処理
11 Working of an ANN (次スライド参照しながら) - 上層から下層へ信号送る(フィードフォワード) - ニューロン間のリンクは加算(興奮)or除去(制御)する役割
- ニューロンでは入力の加重和を計算 活性化関数へ投げる - 閾値を超えるとニューロンは発火 そうでなければ発火しない - 学習モードと使用モードが存在する
12 Working of an ANN
13 教師あり学習 入力と出力の両方が与えられる バックプロパゲーション(誤差逆伝播)によって重みを更新する バックプロパゲーションプロセス 1. 入力 2. 出力 3.
誤差発見 4. 重み更新 Training an ANN
14 Training an ANN ↓教師(Label) 日付 湿度 気圧 雨 5/1
83% 1000 T 5/2 59% 1005 F 5/3 69% 1010 F 5/4 75% 1015 T 5/5 80% 1020 T f(湿度, 気圧) ⇒ f(83, 1000) = T f(59, 1005) = F h(湿度, 気圧) h(10, 1013) = ? h(100, 990) = ?
15 教師なし学習 入力は与えられるが,必要な出力は与えられない 未ラベルのデータセットを使用 入力データをグループ化するために適切な特徴を選択 隠れたパターンを発見するために使用 Training an ANN
16 強化学習 フィードバックと過去の経験から学習する長期的な反復プロセス フィードバックが多ければ多いほど精度向上 マルコフ決定過程とも呼ばれる Training an ANN
17 Training an ANN 強化学習 – これだけは知っておきたい3つのこと - MATLAB &
Simulinkより引用
18 Conclusion 人工ニューラルネットワーク(ANN)の仕組みと学習について述べ た. ANNは更に発展していく.例えば - モバイルやウェブアプリでのカスタマイズされたUXの強化 - 神経学や心理学にも貢献する ANNの性能を決定する変数(伝達関数・学習サンプルのサイズ・
ネットワークのトポロジー・重みの調整技術)はほんの一例に過ぎ ない.
19 CNNとは 特に画像解析のために畳み込みを使用するNN CNN = C(畳み込み+プーリング) + ANN ANN→CNN 畳み込みニューラル
ネットワークとは | これだけは知っておきたい 3 つのこと - MATLAB & Simulinkより引用
20 RNNとは 特にシーケンスデータを処理するNN ANN→RNN リカレントニューラルネットワーク (RNN) とは - MATLAB &
Simulinkより引用
21 RNNとは 1:多→画像についての説明を出力する処理 多:1→動画データの著作権判定処理 多:多→翻訳 ANN→RNN